
Matteo Marti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1797377/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cytokine storm and histopathological findings in 60 cases of COVID-19-related death: from viral load research to immunohistochemical quantification of major players IL-1β, IL-6, IL-15 and TNF-α. Forensic Science, Medicine, and Pathology, 2022, 18, 4-19.	0.6	37
2	In vitro metabolic profile of mexedrone, a mephedrone analog, studied by high―and lowâ€resolution mass spectrometry. Drug Testing and Analysis, 2022, 14, 269-276.	1.6	5
3	Urinary excretion and effects on visual placing response in mice of gamma-valero-lactone, an alternative to gamma‑hydroxy-butyrate for drug-facilitated sexual assault. Emerging Trends in Drugs, Addictions, and Health, 2022, 2, 100028.	0.5	3
4	Zebrafish larvae: A new model to study behavioural effects and metabolism of fentanyl, in comparison to a traditional mice model. Medicine, Science and the Law, 2022, 62, 188-198.	0.6	10
5	In vitro and in vivo pharmaco-dynamic study of the novel fentanyl derivatives: Acrylfentanyl, Ocfentanyl and Furanylfentanyl. Neuropharmacology, 2022, 209, 109020.	2.0	14
6	Effect of -NBOMe Compounds on Sensorimotor, Motor, and Prepulse Inhibition Responses in Mice in Comparison With the 2C Analogs and Lysergic Acid Diethylamide: From Preclinical Evidence to Forensic Implication in Driving Under the Influence of Drugs. Frontiers in Psychiatry, 2022, 13, 875722.	1.3	7
7	Genotoxicological Characterization of (±)cis-4,4′-DMAR and (±)trans-4,4′-DMAR and Their Association. International Journal of Molecular Sciences, 2022, 23, 5849.	1.8	3
8	Behavioral and binding studies on the quinolinyl ester indoles 5F-PB22 (5F-QUPIC) and BB-22 (QUCHIC) in the mouse model. Emerging Trends in Drugs, Addictions, and Health, 2022, 2, 100039.	0.5	4
9	Epigenetic Studies for Evaluation of NPS Toxicity: Focus on Synthetic Cannabinoids and Cathinones. Biomedicines, 2022, 10, 1398.	1.4	2
10	Urinary excretion profile of methiopropamine in mice following intraperitoneal administration: A liquid chromatography–tandem mass spectrometry investigation. Drug Testing and Analysis, 2021, 13, 91-100.	1.6	10
11	Metabolism Study of N-Methyl 2-Aminoindane (NM2AI) and Determination of Metabolites in Biological Samples by LC–HRMS. Journal of Analytical Toxicology, 2021, 45, 475-483.	1.7	10
12	Metabolic profile of the synthetic drug 4,4′-dimethylaminorex in urine by LC–MS-based techniques: selection of the most suitable markers of its intake. Forensic Toxicology, 2021, 39, 89-100.	1.4	7
13	Untargeted Metabolic Profiling of 4-Fluoro-Furanylfentanyl and Isobutyrylfentanyl in Mouse Hepatocytes and Urine by Means of LC-HRMS. Metabolites, 2021, 11, 97.	1.3	6
14	Low-normal doses of methiopropamine induce aggressive behaviour in mice. Psychopharmacology, 2021, 238, 1847-1856.	1.5	6
15	Comparison of N-methyl-2-pyrrolidone (NMP) and the "date rape―drug GHB: behavioral toxicology in the mouse model. Psychopharmacology, 2021, 238, 2275-2295.	1.5	14
16	MAM-2201, One of the Most Potent—Naphthoyl Indole Derivative—Synthetic Cannabinoids, Exerts Toxic Effects on Human Cell-Based Models of Neurons and Astrocytes. Neurotoxicity Research, 2021, 39, 1251-1273.	1.3	12
17	Metabolism study and toxicological determination of mephtetramine in biological samples by liquid chromatography coupled with highâ€resolution mass spectrometry. Drug Testing and Analysis, 2021, 13, 1516-1526.	1.6	4
18	Evaluation of Cytotoxic and Mutagenic Effects of the Synthetic Cathinones Mexedrone, α-PVP and α-PHP. International Journal of Molecular Sciences, 2021, 22, 6320.	1.8	12

#	Article	IF	CITATIONS
19	Single Exposure to the Cathinones MDPV and α-PVP Alters Molecular Markers of Neuroplasticity in the Adult Mouse Brain. International Journal of Molecular Sciences, 2021, 22, 7397.	1.8	3
20	In Vitro and In Vivo Pharmaco-Toxicological Characterization of 1-Cyclohexyl-x-methoxybenzene Derivatives in Mice: Comparison with Tramadol and PCP. International Journal of Molecular Sciences, 2021, 22, 7659.	1.8	6
21	Worsening of the Toxic Effects of (±)Cis-4,4′-DMAR Following Its Co-Administration with (±)Trans-4,4′-DMAR: Neuro-Behavioural, Physiological, Immunohistochemical and Metabolic Studies in Mice. International Journal of Molecular Sciences, 2021, 22, 8771.	1.8	3
22	New insights into methoxetamine mechanisms of action: Focus on serotonergic 5-HT2 receptors in pharmacological and behavioral effects in the rat. Experimental Neurology, 2021, 345, 113836.	2.0	4
23	Ethanol enhanced MDPV- and cocaine-induced aggressive behavior in mice: Forensic implications. Drug and Alcohol Dependence, 2021, 229, 109125.	1.6	3
24	Novel halogenated synthetic cannabinoids impair sensorimotor functions in mice. NeuroToxicology, 2020, 76, 17-32.	1.4	23
25	Reply to "MDPV-induced aggression in humans not established― International Journal of Legal Medicine, 2020, 134, 263-265.	1.2	5
26	mRNA profiling in casework analyses. Journal of Integrated OMICS, 2020, 10, .	0.5	2
27	Acute DOB and PMA Administration Impairs Motor and Sensorimotor Responses in Mice and Causes Hallucinogenic Effects in Adult Zebrafish. Brain Sciences, 2020, 10, 586.	1.1	6
28	Sex and Gender Differences in the Effects of Novel Psychoactive Substances. Brain Sciences, 2020, 10, 606.	1.1	28
29	Novel Psychoactive Phenethylamines: Impact on Genetic Material. International Journal of Molecular Sciences, 2020, 21, 9616.	1.8	19
30	Potential of the zebrafish model for the forensic toxicology screening of NPS: A comparative study of the effects of APINAC and methiopropamine on the behavior of zebrafish larvae and mice. NeuroToxicology, 2020, 78, 36-46.	1.4	9
31	Genotoxic Properties of Synthetic Cannabinoids on TK6 Human Cells by Flow Cytometry. International Journal of Molecular Sciences, 2020, 21, 1150.	1.8	20
32	Discovery and Structure–Activity Relationships of Nociceptin Receptor Partial Agonists That Afford Symptom Ablation in Parkinson's Disease Models. Journal of Medicinal Chemistry, 2020, 63, 2688-2704.	2.9	7
33	Methiopropamine and its acute behavioral effects in mice: is there a gray zone in new psychoactive substances users?. International Journal of Legal Medicine, 2020, 134, 1695-1711.	1.2	19
34	In vitro and in vivo pharmacological characterization of the synthetic opioid MT-45. Neuropharmacology, 2020, 171, 108110.	2.0	22
35	Phenotypic effects of chronic and acute use of methiopropamine in a mouse model. International Journal of Legal Medicine, 2019, 133, 811-820.	1.2	17
36	Application of 13 loci STR multiplex for cannabis sativa genotyping. Forensic Science International: Genetics Supplement Series, 2019, 7, 370-372.	0.1	1

#	Article	IF	CITATIONS
37	Neurochemical and Behavioral Profiling in Male and Female Rats of the Psychedelic Agent 25I-NBOMe. Frontiers in Pharmacology, 2019, 10, 1406.	1.6	25
38	Acute and repeated administration of MDPV increases aggressive behavior in mice: forensic implications. International Journal of Legal Medicine, 2019, 133, 1797-1808.	1.2	15
39	Pharmacological and Behavioral Effects of the Synthetic Cannabinoid AKB48 in Rats. Frontiers in Neuroscience, 2019, 13, 1163.	1.4	31
40	Regulation of miRNAs as new tool for cutaneous vitality lesions demonstration in ligature marks in deaths by hanging. Scientific Reports, 2019, 9, 20011.	1.6	26
41	MDMA alone affects sensorimotor and prepulse inhibition responses in mice and rats: tips in the debate on potential MDMA unsafety in human activity. Forensic Toxicology, 2019, 37, 132-144.	1.4	25
42	Novel Synthetic Opioids: The Pathologist's Point of View. Brain Sciences, 2018, 8, 170.	1.1	40
43	Neurological, sensorimotor and cardiorespiratory alterations induced by methoxetamine, ketamine and phencyclidine in mice. Neuropharmacology, 2018, 141, 167-180.	2.0	37
44	Pharmacoâ€ŧoxicological effects of the novel thirdâ€generation fluorinate synthetic cannabinoids, <scp>5Fâ€ADBINACA</scp> , <scp>ABâ€FUBINACA</scp> , and <scp>STSâ€135</scp> in mice. In vitro and in vivo studies. Human Psychopharmacology, 2017, 32, e2601.	0.7	40
45	Cocaine modulates allosteric D2-Ï $f1$ receptor-receptor interactions on dopamine and glutamate nerve terminals from rat striatum. Cellular Signalling, 2017, 40, 116-124.	1.7	21
46	The Cathinones MDPV and α-PVP Elicit Different Behavioral and Molecular Effects Following Acute Exposure. Neurotoxicity Research, 2017, 32, 594-602.	1.3	28
47	Identification of MT-45 Metabolites: In Silico Prediction, In Vitro Incubation with Rat Hepatocytes and In Vivo Confirmation. Journal of Analytical Toxicology, 2017, 41, 688-697.	1.7	15
48	1â€cyclohexylâ€xâ€methoxybenzene derivatives, novel psychoactive substances seized on the internet market. Synthesis and in vivo pharmacological studies in mice. Human Psychopharmacology, 2017, 32, e2560.	0.7	14
49	Psychostimulant Effect of the Synthetic Cannabinoid JWH-018 and AKB48: Behavioral, Neurochemical, and Dopamine Transporter Scan Imaging Studies in Mice. Frontiers in Psychiatry, 2017, 8, 130.	1.3	36
50	Neuropharmacology of New Psychoactive Substances (NPS): Focus on the Rewarding and Reinforcing Properties of Cannabimimetics and Amphetamine-Like Stimulants. Frontiers in Neuroscience, 2016, 10, 153.	1.4	148
51	Synthetic cannabinoid JWH-018 and its halogenated derivatives JWH-018-Cl and JWH-018-Br impair Novel Object Recognition in mice: Behavioral, electrophysiological and neurochemical evidence. Neuropharmacology, 2016, 109, 254-269.	2.0	40
52	Effect of the novel synthetic cannabinoids AKB48 and 5F-AKB48 on "tetradâ€; sensorimotor, neurological and neurochemical responses in mice. In vitro and in vivo pharmacological studies. Psychopharmacology, 2016, 233, 3685-3709.	1.5	63
53	Effect of JWH-250, JWH-073 and their interaction on "tetradâ€; sensorimotor, neurological and neurochemical responses in mice. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2016, 67, 31-50.	2.5	62
54	JWH-018 impairs sensorimotor functions in mice. Neuroscience, 2015, 300, 174-188.	1.1	59

#	Article	IF	CITATIONS
55	Novel halogenated derivates of JWH-018: Behavioral and binding studies in mice. Neuropharmacology, 2015, 95, 68-82.	2.0	81
56	Stimulation of inÂvivo dopamine transmission and intravenous self-administration in rats and mice by JWH-018, a Spice cannabinoid. Neuropharmacology, 2015, 99, 705-714.	2.0	65
57	L-dopa-induced dyskinesia: beyond an excessive dopamine tone in the striatum. Scientific Reports, 2014, 4, 3730.	1.6	68
58	Pharmacological and genetic evidence for pre- and postsynaptic D2 receptor involvement in motor responses to nociceptin/orphanin FQ receptor ligands. Neuropharmacology, 2013, 72, 126-138.	2.0	14
59	Acute and chronic antiparkinsonian effects of the novel nociceptin/orphanin <scp>FQ</scp> receptor antagonist <scp>NiK</scp> â€21273 in comparison with <scp>SB</scp> â€612111. British Journal of Pharmacology, 2013, 168, 863-879.	2.7	26
60	Nociceptin/Orphanin FQ Receptor Agonists Attenuate L-DOPA-Induced Dyskinesias. Journal of Neuroscience, 2012, 32, 16106-16119.	1.7	39
61	Mechanisms underlying the impairment of hippocampal long-term potentiation and memory in experimental Parkinson's disease. Brain, 2012, 135, 1884-1899.	3.7	124
62	In vivo evidence for a differential contribution of striatal and nigral D1 and D2 receptors to l-DOPA induced dyskinesia and the accompanying surge of nigral amino acid levels. Neurobiology of Disease, 2012, 45, 573-582.	2.1	63
63	Loss of cortical GABA terminals in Unverricht–Lundborg disease. Neurobiology of Disease, 2012, 47, 216-224.	2.1	42
64	Nociceptin/orphanin FQ receptor knockout rats: In vitro and in vivo studies. Neuropharmacology, 2011, 60, 572-579.	2.0	57
65	Dopamine–nociceptin/orphanin FQ interactions in the substantia nigra reticulata of hemiparkinsonian rats: Involvement of D2/D3 receptors and impact on nigro-thalamic neurons and motor activity. Experimental Neurology, 2011, 228, 126-137.	2.0	18
66	Amantadine attenuates levodopaâ€induced dyskinesia in mice and rats preventing the accompanying rise in nigral GABA levels. Journal of Neurochemistry, 2011, 118, 1043-1055.	2.1	70
67	Brain Interstitial Nociceptin/Orphanin FQ Levels are Elevated in Parkinson's Disease. Movement Disorders, 2010, 25, 1723-1732.	2.2	37
68	Further evidence for an involvement of nociceptin/orphanin FQ in the pathophysiology of Parkinson's disease: a behavioral and neurochemical study in reserpinized mice. Journal of Neurochemistry, 2010, 115, 1543-1555.	2.1	24
69	Pharmacological profile and antiparkinsonian properties of the novel nociceptin/orphanin FQ receptor antagonist 1-[1-cyclooctylmethyl-5-(1-hydroxy-1-methyl-ethyl)-1,2,3,6-tetrahydro-pyridin-4-yl]-3-ethyl-1,3-dihydro-benzoimida (GF-4). Peptides. 2010. 31. 1194-1204.	zol-2-one	16
70	Endogenous nociceptin/orphanin FQ (N/OFQ) contributes to haloperidol-induced changes of nigral amino acid transmission and parkinsonism: a combined microdialysis and behavioral study in naA¬ve and nociceptin/orphanin FQ receptor knockout mice. Neuroscience, 2010, 166, 40-48.	1.1	28
71	Dual motor response to l-dopa and nociceptin/orphanin FQ receptor antagonists in 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP) treated mice: Paradoxical inhibition is relieved by D2/D3 receptor blockade. Experimental Neurology, 2010, 223, 473-484.	2.0	26
72	Nociceptin/Orphanin FQ Modulates Motor Behavior and Primary Motor Cortex Output Through Receptors Located in Substantia Nigra Reticulata. Neuropsychopharmacology, 2009, 34, 341-355.	2.8	22

#	Article	IF	CITATIONS
73	The novel delta opioid receptor agonist UFP-512 dually modulates motor activity in hemiparkinsonian rats via control of the nigro-thalamic pathway. Neuroscience, 2009, 164, 360-369.	1.1	31
74	Solid Lipid Nanoparticles as Delivery Systems for Bromocriptine. Pharmaceutical Research, 2008, 25, 1521-1530.	1.7	164
75	Stimulation of delta opioid receptors located in substantia nigra reticulata but not globus pallidus or striatum restores motor activity in 6â€hydroxydopamine lesioned rats: new insights into the role of delta receptors in parkinsonism. Journal of Neurochemistry, 2008, 107, 1647-1659.	2.1	27
76	The novel nociceptin/orphanin FQ receptor antagonist Trapâ€101 alleviates experimental parkinsonism through inhibition of the nigroâ€thalamic pathway: positive interaction with <scp>L</scp> â€DOPA. Journal of Neurochemistry, 2008, 107, 1683-1696.	2.1	38
77	Nociceptin/orphanin FQ receptor blockade attenuates MPTP-induced parkinsonism. Neurobiology of Disease, 2008, 30, 430-438.	2.1	55
78	The Nociceptin/Orphanin FQ Receptor Antagonist J-113397 and L-DOPA Additively Attenuate Experimental Parkinsonism through Overinhibition of the Nigrothalamic Pathway. Journal of Neuroscience, 2007, 27, 1297-1307.	1.7	79
79	Antagonism of metabotropic glutamate receptor type 5 attenuates l-DOPA-induced dyskinesia and its molecular and neurochemical correlates in a rat model of Parkinson?s disease. Journal of Neurochemistry, 2007, 101, 483-497.	2.1	194
80	NR2A and NR2B subunit containing NMDA receptors differentially regulate striatal output pathways. Journal of Neurochemistry, 2007, 103, 2200-2211.	2.1	40
81	Group-II metabotropic glutamate receptors negatively modulate NMDA transmission at striatal cholinergic terminals: Role of P/Q-type high voltage activated Ca++ channels and endogenous dopamine. Molecular and Cellular Neurosciences, 2006, 31, 284-292.	1.0	14
82	Striatal glutamate release evoked in vivo by NMDA is dependent upon ongoing neuronal activity in the substantia nigra, endogenous striatal substance P and dopamine. Journal of Neurochemistry, 2005, 93, 195-205.	2.1	21
83	Blockade of Nociceptin/Orphanin FQ Transmission Attenuates Symptoms and Neurodegeneration Associated with Parkinson's Disease. Journal of Neuroscience, 2005, 25, 9591-9601.	1.7	116
84	Effects of chemical ischemia in cerebral cortex slices. Neurochemistry International, 2005, 47, 482-490.	1.9	13
85	Changes of Glutamatergic Control of Striatal Acetylcholine Release in Experimental Parkinsonism. , 2005, , 109-117.		Ο
86	Nociceptin/Orphanin FQ Modulates Neurotransmitter Release in the Substantia Nigra: Biochemical and Behavioural Outcome. , 2005, , 187-196.		1
87	Blockade of Nociceptin/Orphanin FQ Receptor Signaling in Rat Substantia Nigra Pars Reticulata Stimulates Nigrostriatal Dopaminergic Transmission and Motor Behavior. Journal of Neuroscience, 2004, 24, 6659-6666.	1.7	109
88	RAPID COMMUNICATION: Blockade of nociceptin/orphanin FQ transmission in rat substantia nigra reverses haloperidol-induced akinesia and normalizes nigral glutamate release. Journal of Neurochemistry, 2004, 91, 1501-1504.	2.1	44
89	Pharmacological profile of nociceptin/orphanin FQ receptors regulating 5-hydroxytryptamine release in the mouse neocortex. European Journal of Neuroscience, 2004, 19, 1317-1324.	1.2	39
90	Neuronal vulnerability following inhibition of mitochondrial complex II: a possible ionic mechanism for Huntington's disease. Molecular and Cellular Neurosciences, 2004, 25, 9-20.	1.0	47

#	Article	IF	CITATIONS
91	Plasticity of glutamatergic control of striatal acetylcholine release in experimental parkinsonism: opposite changes at group-II metabotropic and NMDA receptors. Journal of Neurochemistry, 2003, 84, 792-802.	2.1	18
92	Differential responsiveness of rat striatal nerve endings to the mitochondrial toxin 3-nitropropionic acid: implications for Huntington's disease. European Journal of Neuroscience, 2003, 18, 759-767.	1.2	20
93	Pharmacological profiles of presynaptic nociceptin/orphanin FQ receptors modulating 5-hydroxytryptamine and noradrenaline release in the rat neocortex. British Journal of Pharmacology, 2003, 138, 91-98.	2.7	57
94	Lamotrigine and remacemide protect striatal neurons against in vitro ischemia: an electrophysiological study. Experimental Neurology, 2003, 182, 461-469.	2.0	18
95	Nociceptin/orphanin FQ receptors modulate glutamate extracellular levels in the substantia nigra pars reticulata. A microdialysis study in the awake freely moving rat. Neuroscience, 2002, 112, 153-160.	1.1	39
96	Metabotropic Glutamate 2 Receptors Modulate Synaptic Inputs and Calcium Signals in Striatal Cholinergic Interneurons. Journal of Neuroscience, 2002, 22, 6176-6185.	1.7	67
97	Somatostatin Release in the Hippocampus in the Kindling Model of Epilepsy. Journal of Neurochemistry, 2002, 74, 2497-2503.	2.1	22
98	Striatal dopamine-NMDA receptor interactions in the modulation of glutamate release in the substantia nigra pars reticulata in vivo: opposite role for D1 and D2 receptors. Journal of Neurochemistry, 2002, 83, 635-644.	2.1	56
99	[Nphe1 ,Arg14 ,Lys15]Nociceptin-NH2 , a novel potent and selective antagonist of the nociceptin/orphanin FQ receptor. British Journal of Pharmacology, 2002, 136, 303-311.	2.7	158
100	Direct and indirect inhibition by nociceptin/orphanin FQ on noradrenaline release from rodent cerebral cortex in vitro. British Journal of Pharmacology, 2002, 136, 1178-1184.	2.7	14
101	Presynaptic group I and II metabotropic glutamate receptors oppositely modulate striatal acetylcholine release. European Journal of Neuroscience, 2001, 14, 1181-1184.	1.2	41
102	Kindled seizure-evoked somatostatin release in the hippocampus. NeuroReport, 2000, 11, 3209-3212.	0.6	3
103	Increased responsivity of glutamate release from the substantia nigra pars reticulata to striatal NMDA receptor blockade in a model of Parkinson's disease. A dual probe microdialysis study in hemiparkinsonian rats. European Journal of Neuroscience, 2000, 12, 1848-1850.	1.2	22
104	Modulation of 5-hydroxytryptamine efflux from rat cortical synaptosomes by opioids and nociceptin. British Journal of Pharmacology, 2000, 130, 425-433.	2.7	67
105	In Vitro Evidence for Increased Facilitation of Striatal Acetylcholine Release via Pre- and Postsynaptic NMDA Receptotors in Hemiparkinsonian Rats. Journal of Neurochemistry, 1999, 72, 875-878.	2.1	20
106	L-glutamate and gamma-aminobutyric acid efflux from rat cerebrocortical synaptosomes: modulation by kappa- and mu- but not delta- and opioid receptor like-1 receptors. Journal of Pharmacology and Experimental Therapeutics, 1999, 291, 1365-71.	1.3	33
107	Evidence for a striatal NMDA receptor modulation of nigral glutamate release. A dual probe microdialysis study in the awake freely moving rat. European Journal of Neuroscience, 1998, 10, 1716-1722.	1.2	15
108	Review Article Reciprocaldopamine-glutamatemodulation of release in the basalganglia. Neurochemistry International, 1998, 33, 383-397.	1.9	115

#	Article	IF	CITATIONS
109	NMDA and Nonâ€NMDA Ionotropic Glutamate Receptors Modulate Striatal Acetylcholine Release via Pre― and Postsynaptic Mechanisms. Journal of Neurochemistry, 1998, 71, 2006-2017.	2.1	35