Boris A Katsnelson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1797224/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exposure to indoor mould and children's respiratory health in the PATY study. Journal of Epidemiology and Community Health, 2008, 62, 708-714.	2.0	92
2	PM ₁₀ , and children's respiratory symptoms and lung function in the PATY study. European Respiratory Journal, 2012, 40, 538-547.	3.1	87
3	Housing Characteristics and Children's Respiratory Health in the Russian Federation. American Journal of Public Health, 2004, 94, 657-662.	1.5	79
4	In vivo toxicity of copper oxide, lead oxide and zinc oxide nanoparticles acting in different combinations and its attenuation with a complex of innocuous bio-protectors. Toxicology, 2017, 380, 72-93.	2.0	74
5	Prenatal and postnatal tobacco smoke exposure and respiratory health in Russian children. Respiratory Research, 2006, 7, 48.	1.4	72
6	Subchronic Toxicity of Copper Oxide Nanoparticles and Its Attenuation with the Help of a Combination of Bioprotectors. International Journal of Molecular Sciences, 2014, 15, 12379-12406.	1.8	68
7	Comparative in Vivo Assessment of Some Adverse Bioeffects of Equidimensional Gold and Silver Nanoparticles and the Attenuation of Nanosilver's Effects with a Complex of Innocuous Bioprotectors. International Journal of Molecular Sciences, 2013, 14, 2449-2483.	1.8	67
8	Some considerations concerning the theory of combined toxicity: A case study of subchronic experimental intoxication with cadmium and lead. Food and Chemical Toxicology, 2014, 64, 144-156.	1.8	55
9	Attenuation of Combined Nickel(II) Oxide and Manganese(II, III) Oxide Nanoparticles' Adverse Effects with a Complex of Bioprotectors. International Journal of Molecular Sciences, 2015, 16, 22555-22583.	1.8	55
10	Subchronic Systemic Toxicity and Bioaccumulation of Fe ₃ O ₄ Nano- and Microparticles Following Repeated Intraperitoneal Administration to Rats. International Journal of Toxicology, 2011, 30, 59-68.	0.6	52
11	Some patterns of metallic nanoparticles' combined subchronic toxicity as exemplified by a combination of nickel and manganese oxide nanoparticles. Food and Chemical Toxicology, 2015, 86, 351-364.	1.8	46
12	On the contribution of the phagocytosis and the solubilization to the iron oxide nanoparticles retention in and elimination from lungs under long-term inhalation exposure. Toxicology, 2016, 363-364, 19-28.	2.0	41
13	Further development of mathematical description for combined toxicity: A case study of lead–fluoride combination. Toxicology Reports, 2015, 2, 297-307.	1.6	36
14	A paradoxical response of the rat organism to long-term inhalation of silica-containing submicron (predominantly nanoscale) particles of a collected industrial aerosol at realistic exposure levels. Toxicology, 2017, 384, 59-68.	2.0	35
15	Toxic Effects of Low-Level Long-Term Inhalation Exposures of Rats to Nickel Oxide Nanoparticles. International Journal of Molecular Sciences, 2019, 20, 1778.	1.8	33
16	Some inferences from in vivo experiments with metal and metal oxide nanoparticles: the pulmonary phagocytosis response, subchronic systemic toxicity and genotoxicity, regulatory proposals, searching for bioprotectors (a self-overview). International Journal of Nanomedicine, 2015, 10, 3013.	3.3	32
17	Some Peculiarities of Pulmonary Clearance Mechanisms in Rats after Intratracheal Instillation of Magnetite (Fe ₃ O ₄) Suspensions with Different Particle Sizes in the Nanometer and Micrometer Ranges: Are We Defenseless against Nanoparticles?. International Journal of Occupational and Environmental Health, 2010, 16, 508-524.	1.2	28
18	The most important inferences from the Ekaterinburg nanotoxicology team's animal experiments assessing adverse health effects of metallic and metal oxide nanoparticles. Toxicology Reports, 2018, 5, 363-376.	1.6	28

#	Article	IF	CITATIONS
19	Combined Subchronic Toxicity of Aluminum (III), Titanium (IV) and Silicon (IV) Oxide Nanoparticles and Its Alleviation with a Complex of Bioprotectors. International Journal of Molecular Sciences, 2018, 19, 837.	1.8	28

Further development of the theory and mathematical description of combined toxicity: An approach to classifying types of action of three-factorial combinations (a case study of) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 502697 Td (raranganese 20

21	Some aspects of the problem of individual predisposition to silicosis Environmental Health Perspectives, 1986, 68, 175-185.	2.8	25
22	Experimental study and mathematical modeling of toxic metals combined action as a scientific foundation for occupational and environmental health risk assessment. A summary of results obtained by the Ekaterinburg research team (Russia). Toxicology Reports, 2017, 4, 194-201.	1.6	25
23	Prediction of the comparative intensity of pneumoconiotic changes caused by chronic inhalation exposure to dusts of different cytotoxicity by means of a mathematical model Occupational and Environmental Medicine, 1994, 51, 173-180.	1.3	24
24	Are inÂvivo and inÂvitro assessments of comparative and combined toxicity of the same metallic nanoparticles compatible, or contradictory, or both? A juxtaposition of data obtained in respective experiments with NiO and Mn 3 O 4 nanoparticles. Food and Chemical Toxicology, 2017, 109, 393-404.	1.8	23
25	Further verification of some postulates of the combined toxicity theory: New animal experimental data on separate and joint adverse effects of lead and cadmium. Food and Chemical Toxicology, 2020, 136, 110971.	1.8	23
26	Manifestation of Systemic Toxicity in Rats after a Short-Time Inhalation of Lead Oxide Nanoparticles. International Journal of Molecular Sciences, 2020, 21, 690.	1.8	22
27	Toxicodynamic and Toxicokinetic Descriptors of Combined Chromium (VI) and Nickel Toxicity. International Journal of Toxicology, 2014, 33, 498-505.	0.6	20
28	Experimental Research into Metallic and Metal Oxide Nanoparticle Toxicity In Vivo. Nanomedicine and Nanotoxicology, 2017, , 259-319.	0.1	20
29	Effects of subchronic lead intoxication of rats on the myocardium contractility. Food and Chemical Toxicology, 2018, 120, 378-389.	1.8	20
30	Interaction of Iron Oxide Fe3O4 Nanoparticles and Alveolar Macrophages in Vivo. Bulletin of Experimental Biology and Medicine, 2012, 152, 627-629.	0.3	19
31	Attenuation of subchronic formaldehyde inhalation toxicity with oral administration of glutamate, glycine and methionine. Toxicology Letters, 2013, 220, 181-186.	0.4	19
32	Some Characteristics of Free Cell Population in the Airways of Rats after Intratracheal Instillation of Copper-Containing Nano-Scale Particles. International Journal of Molecular Sciences, 2014, 15, 21538-21553.	1.8	19
33	Changes in rat myocardium contractility under subchronic intoxication with lead and cadmium salts administered alone or in combination. Toxicology Reports, 2020, 7, 433-442.	1.6	19
34	QUARTZ DUST RETENTION IN RAT LUNGS UNDER CHRONIC EXPOSURE SIMULATED BY A MULTICOMPARTMENTAL MODEL: FURTHER EVIDENCE OF THE KEY ROLE OF THE CYTOTOXICITY OF QUARTZ PARTICLES. Inhalation Toxicology, 1997, 9, 703-715.	0.8	17
35	More data on in vitro assessment of comparative and combined toxicity of metal oxide nanoparticles. Food and Chemical Toxicology, 2019, 133, 110753.	1.8	15
36	On the relationship between activation and breakdown of macrophages in the pathogenesis of silicosis (an overview). Medicina Del Lavoro, 1995, 86, 511-21.	0.3	13

BORIS A KATSNELSON

#	Article	IF	CITATIONS
37	Further analysis of rat myocardium contractility changes associated with a subchronic lead intoxication. Food and Chemical Toxicology, 2019, 125, 233-241.	1.8	12
38	Some Peculiarities in the Dose Dependence of Separate and Combined In Vitro Cardiotoxicity Effects Induced by CdS and PbS Nanoparticles With Special Attention to Hormesis Manifestations. Dose-Response, 2020, 18, 155932582091418.	0.7	12
39	Using Various Nonlinear Response Surfaces for Mathematical Description of the Type of Combined Toxicity. Dose-Response, 2018, 16, 155932581881659.	0.7	11
40	Enhancing Population's Resistance to Toxic Exposures as an Auxilliary Tool of Decreasing Environmental and Occupational Health Risks (a Self-Overview). Journal of Environmental Protection, 2014, 05, 1435-1449.	0.3	11
41	Use of health information systems in the Russian federation in the assessment of environmental health effects Environmental Health Perspectives, 2000, 108, 589-594.	2.8	10
42	Applying theoretical premises of binary toxicity mathematical modeling to combined impacts of chemical plus physical agents (A case study of moderate subchronic exposures to fluoride and static) Tj ETQq0 C	0 1 gBT /C	ve ilo ck 10 Tf
43	Force-velocity characteristics of isolated myocardium preparations from rats exposed to subchronic intoxication with lead and cadmium acting separately or in combination. Food and Chemical Toxicology, 2020, 144, 111641.	1.8	10
44	On an extended understanding of the term "hormesis―for denoting alternating directions of the organism's response to increasing adverse exposures. Toxicology, 2021, 447, 152629.	2.0	9
45	An Approach to Characterizing the Type of Combined Environmental Toxicity Based on Epidemiologically Assessed Exposure-Response Relationships. The Open Epidemiology Journal, 2011, 4, 60-69.	1.0	9
46	An Approach to Tentative Reference Levels Setting for Nanoparticles in the Workroom Air Based on Comparing Their Toxicity with That of Their Micrometric Counterparts: A Case Study of Iron Oxide Fe3O4. ISRN Nanotechnology, 2012, 2012, 1-12.	1.3	9
47	Cardioinotropic Effects in Subchronic Intoxication of Rats with Lead and/or Cadmium Oxide Nanoparticles. International Journal of Molecular Sciences, 2021, 22, 3466.	1.8	8
48	Does a concomitant exposure to lead influence unfavorably the naphthalene subchronic toxicity and toxicokinetics?. Environmental Toxicology and Chemistry, 2014, 33, 152-157.	2.2	7
49	Is it possible to enhance the organism's resistance to toxic effects of metallic nanoparticles?. Toxicology, 2015, 337, 79-82.	2.0	7
50	Changes in the Dose–Response Relationship of One Toxicant Under Simultaneous Exposure to Another Toxicant. Dose-Response, 2016, 14, 155932581667293.	0.7	7
51	The pulmonary phagocytosis response to separate and combined impacts of manganese (IV) and chromium (VI) containing particulates. Toxicology, 2016, 370, 78-85.	2.0	7
52	Looking for Biological Protectors against Adverse Health Effects of Some Nanoparticles that Can Pollute Workplace and Ambient Air (A Summary of Authors' Experimental Results). Journal of Environmental Protection, 2017, 08, 844-866.	0.3	7
53	Some considerations concerning multimedia-multipollutant risk assessment methodology: use of epidemiologic data for non-cancer risk assessment in Russia Environmental Health Perspectives, 2001, 109, 7-13.	2.8	6
54	Some data on the comparative and combined toxic activity of nanoparticles containing lead and cadmium with special attention to their vasotoxicity. Nanotoxicology, 2021, 15, 205-222.	1.6	6

BORIS A KATSNELSON

#	Article	IF	CITATIONS
55	New Data on Variously Directed Dose-Response Relationships and the Combined Action Types for Different Outcomes of <i>in Vitro</i> Nanoparticle Cytotoxicity. Dose-Response, 2021, 19, 155932582110524.	0.7	5
56	Changes in the Cardiotoxic Effects of Lead Intoxication in Rats Induced by Muscular Exercise. International Journal of Molecular Sciences, 2022, 23, 4417.	1.8	5
57	Looking for the LOAEL or NOAEL Concentration of Nickel-Oxide Nanoparticles in a Long-Term Inhalation Exposure of Rats. International Journal of Molecular Sciences, 2021, 22, 416.	1.8	4
58	Uptake of Some Metallic Nanoparticles by, and their Impact on Pulmonary Macrophages in Vivo as Viewed by Optical, Atomic Force, and Transmission Electron Microscopy. Journal of Nanomedicine & Nanotechnology, 2011, 03, .	1.1	4
59	Toxicity of monazite particulates and its attenuation with a complex of bio-protectors. Medicina Del Lavoro, 2009, 100, 455-70.	0.3	4
60	Some Considerations concerning Multimedia-Multipollutant Risk Assessment Methodology: Use of Epidemiologic Data for Non-Cancer Risk Assessment in Russia. Environmental Health Perspectives, 2001, 109, 7.	2.8	3
61	An overview of experiments with lead-containing nanoparticles performed by the Ekaterinburg nanotoxicological research team. Nanotoxicology, 2020, 14, 788-806.	1.6	3
62	Some outcomes and a hypothetical mechanism of combined lead and benzo(a)pyrene intoxication, and its alleviation with a complex of bioprotectors. Toxicology Reports, 2020, 7, 986-994.	1.6	2
63	Comparative and Combined In Vitro Vasotoxicity of Nanoparticles Containing Lead and Cadmium. Dose-Response, 2021, 19, 155932582098216.	0.7	2
64	CRITERIA FOR HYGIENIC ASSESSMENT OF AMBIENT AIR CONCENTRATIONS OF INDUSTRIAL AEROSOLS WITH A HIGH CONTENT OF AMORPHOUS SILICON DIOXIDE NANOPARTICLES. Gigiena I Sanitariia, 2019, 96, 1179-1181.	0.1	2
65	BIOLOGICAL PROPHYLAXIS IN THE SYSTEM OF THE MANAGEMENT OF OCCUPATIONAL RISK DUE TO EXPOSURE OF METAL-CONTAINING NANOPARTICLES. Gigiena I Sanitariia, 2019, 96, 1187-1191.	0.1	2
66	Cardiotoxicity in rats following subchronic exposure to cadmium chloride solution and cadmium oxide nanoparticles. , 2022, 2, 1-10.		2
67	Trends and Perspectives of the Biological Prophylaxis of Silicosis. Environmental Health Perspectives, 1989, 82, 311.	2.8	1
68	An Approach to Detecting Delayed Effects of Radioactive Contamination on Industrial-Urban-Area Dwellers. Environmental Health Perspectives, 1994, 102, 470.	2.8	1
69	Consequent stages of developing a multi-compartmental mechanistic model for chronically inhaled nanoparticles pulmonary retention. Toxicology Reports, 2019, 6, 279-287.	1.6	1
70	General toxic and cardiovascular toxic impact of cadmium oxide nanoparticles. Gigiena I Sanitariia, 2021, 99, 1346-1352.	0.1	1
71	The combined action of lead and physical load in a subchorionic experiment on rats. Gigiena I Sanitariia, 2021, 100, 1404-1411.	0.1	1
72	The various dose-dependent effect of selenium oxide and copper oxide nanoparticles in vitro and application of the hormesis paradigm. Gigiena I Sanitariia, 2021, 100, 1475-1480.	0.1	1

#	Article	IF	CITATIONS
73	Experimental Testing of an Approach to Establishing Combined Toxicity of Ternary Nanoparticle Mixtures. International Journal of Molecular Sciences, 2022, 23, 4356.	1.8	1
74	Impact of toxicity effects of zinc oxide nanoparticles in rats within acute and subacute experiments. Gigiena I Sanitariia, 2021, 100, 704-710.	0.1	0
75	Assessment of cytotoxicity of an original industrial aerosol containing a high percentage of amorphous silica in the nanometer range. Gigiena I Sanitariia, 2021, 100, 938-942.	0.1	Ο
76	Analysis of changes in the rat cardiovascular system under the action of lead intoxication and muscular exercise. Gigiena I Sanitariia, 2021, 100, 1467-1474.	0.1	0