Jayanta Das

List of Publications by Citations

Source: https://exaly.com/author-pdf/1797017/jayanta-das-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 146
 5,418
 39
 69

 papers
 citations
 h-index
 g-index

 149
 5,802
 3.9
 5.66

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
146	"Work-Hardenable" ductile bulk metallic glass. <i>Physical Review Letters</i> , 2005 , 94, 205501	7.4	791
145	Mechanical properties of bulk metallic glasses and composites. <i>Journal of Materials Research</i> , 2007 , 22, 285-301	2.5	341
144	Is the energy density a reliable parameter for materials synthesis by selective laser melting?. <i>Materials Research Letters</i> , 2017 , 5, 386-390	7.4	182
143	Deformation-induced martensitic transformation in CuZr(Al,Ti) bulk metallic glass composites. <i>Scripta Materialia</i> , 2009 , 60, 431-434	5.6	148
142	High-strength Ti-base ultrafine eutectic with enhanced ductility. <i>Applied Physics Letters</i> , 2005 , 87, 1619	03.4	142
141	Heterogeneity of a Cu47.5Zr47.5Al5 bulk metallic glass. <i>Applied Physics Letters</i> , 2006 , 88, 051911	3.4	141
140	Effect of aspect ratio on the compressive deformation and fracture behaviour of Zr-based bulk metallic glass. <i>Philosophical Magazine Letters</i> , 2005 , 85, 513-521	1	134
139	High strength TiBeBn ultrafine composites with large plasticity. Scripta Materialia, 2007, 57, 101-104	5.6	123
138	High strength ductile Cu-base metallic glass. <i>Intermetallics</i> , 2006 , 14, 876-881	3.5	118
137	Improved plasticity of bulk metallic glasses upon cold rolling. Scripta Materialia, 2010, 62, 678-681	5.6	107
136	High-strength Zr-Nb-(Cu,Ni,Al) composites with enhanced plasticity. <i>Applied Physics Letters</i> , 2003 , 82, 4690-4692	3.4	106
135	Microscopic deformation mechanism of a Ti66.1Nb13.9Ni4.8Cu8Sn7.2 nanostructuredendrite composite. <i>Acta Materialia</i> , 2006 , 54, 3701-3711	8.4	89
134	Fabrication and mechanical properties of NiNb metallic glass particle-reinforced Al-based metal matrix composite. <i>Scripta Materialia</i> , 2006 , 54, 1445-1450	5.6	84
133	Phase stability and its effect on the deformation behavior of TiNbIIaIh/Cr Ialloys. <i>Scripta Materialia</i> , 2006 , 54, 1943-1948	5.6	80
132	Dynamic softening and indentation size effect in a Zr-based bulk glass-forming alloy. <i>Scripta Materialia</i> , 2007 , 56, 605-608	5.6	76
131	Wavy cleavage fracture of bulk metallic glass. <i>Applied Physics Letters</i> , 2006 , 89, 251917	3.4	75
130	Modeling deformation behavior of Cu🏿 r 🖺 l bulk metallic glass matrix composites. <i>Applied Physics Letters</i> , 2009 , 95, 101906	3.4	73

(2019-2008)

129	Formation of a bimodal eutectic structure in TilleIn alloys with enhanced plasticity. <i>Applied Physics Letters</i> , 2008 , 93, 141901	3.4	70
128	Plasticity induced by nanoparticle dispersions in bulk metallic glasses. <i>Journal of Non-Crystalline Solids</i> , 2007 , 353, 327-331	3.9	70
127	Structural evolution of Cullr metallic glasses under tension. <i>Acta Materialia</i> , 2009 , 57, 4133-4139	8.4	68
126	Phase formation and thermal stability in Cu🏿r 🖫 i(Al) metallic glasses. <i>Intermetallics</i> , 2009 , 17, 453-462	3.5	67
125	Interfacial reaction during the fabrication of Ni60Nb40 metallic glass particles-reinforced Al based MMCs. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2007 , 444, 206-213	5.3	64
124	Fracture surface morphology of compressed bulk metallic glass-matrix-composites and bulk metallic glass. <i>Intermetallics</i> , 2006 , 14, 982-986	3.5	64
123	Tunable (violet to green) emission by high-yield graphene quantum dots and exploiting its unique properties towards sun-light-driven photocatalysis and supercapacitor electrode materials. <i>Materials Today Communications</i> , 2017 , 11, 76-86	2.5	56
122	Effect of casting conditions on microstructure and mechanical properties of high-strength Zr73.5Nb9Cu7Ni1Al9.5 in situ composites. <i>Scripta Materialia</i> , 2003 , 49, 1189-1195	5.6	55
121	Work hardening ability of ductile Ti45Cu40Ni7.5Zr5Sn2.5 and Cu47.5Zr47.5Al5 bulk metallic glasses. <i>Applied Physics Letters</i> , 2006 , 89, 071908	3.4	54
120	Ductile Metallic Glasses in Supercooled Martensitic Alloys. <i>Materials Transactions</i> , 2006 , 47, 2606-2609	1.3	54
119	Effect of casting conditions on dendrite-amorphous/nanocrystalline ZrNbCuNiAl in situ composites. <i>Intermetallics</i> , 2004 , 12, 1153-1158	3.5	54
118	Strain distribution in Zr64.13Cu15.75Ni10.12Al10 bulk metallic glass investigated by in situ tensile tests under synchrotron radiation. <i>Journal of Applied Physics</i> , 2008 , 104, 013522	2.5	53
117	Facile synthesis of CdO nanorods and exploiting its properties towards supercapacitor electrode materials and low power UV irradiation driven photocatalysis against methylene blue dye. <i>Materials Research Bulletin</i> , 2017 , 90, 224-231	5.1	48
116	Microstructure and mechanical properties of slowly cooled Cu47.5Zr47.5Al5. <i>Journal of Materials Research</i> , 2007 , 22, 326-333	2.5	46
115	Microstructural inhomogeneities introduced in a Zr-based bulk metallic glass upon low-temperature annealing. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2008 , 491, 124-130	5.3	44
114	Plasticity in bulk metallic glasses investigated via the strain distribution. <i>Physical Review B</i> , 2007 , 76,	3.3	44
113	Deformation-induced nanostructuring in a TiNbTaIh Ialloy. Applied Physics Letters, 2006, 89, 031906	3.4	44
112	Facile synthesis of CuO nanowires and Cu2O nanospheres grown on rGO surface and exploiting its photocatalytic, antibacterial and supercapacitive properties. <i>Physica B: Condensed Matter</i> , 2019 , 558, 74-81	2.8	43

111	Designing bulk metallic glass and glass matrix composites in martensitic alloys. <i>Journal of Alloys and Compounds</i> , 2009 , 483, 97-101	5.7	43	
110	Propagation of shear bands in Ti66.1Cu8Ni4.8Sn7.2Nb13.9 nanostructure-dendrite composite during deformation. <i>Applied Physics Letters</i> , 2005 , 86, 171909	3.4	43	
109	Effect of cryorolling on the microstructure and tensile properties of bulk nano-austenitic stainless steel. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2015 , 631, 241-247	5.3	42	
108	Martensite Formation in a Ductile Cu47.5Zr47.5Al5 Bulk Metallic Glass Composite. <i>Advanced Engineering Materials</i> , 2007 , 9, 487-491	3.5	41	
107	Processing Routes, Microstructure and Mechanical Properties of Metallic Glasses and their Composites. <i>Advanced Engineering Materials</i> , 2007 , 9, 443-453	3.5	39	
106	Strength asymmetry of ductile dendrites reinforced Zr- and Ti-based composites. <i>Journal of Materials Research</i> , 2006 , 21, 2331-2336	2.5	39	
105	Bulk ultra-fine eutectic structure in TifleBase alloys. <i>Journal of Alloys and Compounds</i> , 2007 , 434-435, 28-31	5.7	39	
104	Ti-base nanoeutectic-hexagonal structured (D019) dendrite composite. <i>Scripta Materialia</i> , 2008 , 58, 63	1-6.364	34	
103	Nanostructured Composites in Multicomponent Alloy Systems. <i>Materials Transactions</i> , 2003 , 44, 1999-2	2006	34	
102	Glass formation and mechanical properties of (Cu50Zr50)100 \mathbb{N} Alx (x = 0, 4, 5, 7) bulk metallic glasses. <i>Journal of Alloys and Compounds</i> , 2009 , 483, 146-149	5.7	33	
101	A review on nano-/ultrafine advanced eutectic alloys. Journal of Alloys and Compounds, 2020, 827, 1542	22 6 .7	32	
100	Ti-base bulk nanostructure-dendrite composites: Microstructure and deformation. <i>Materials Science & Microstructure and Processing</i> , 2007 , 449-451, 24-2	295.3	32	
99	Propagation of shear bands in a Cu47.5Zr47.5Al5 bulk metallic glass. <i>Journal of Materials Research</i> , 2008 , 23, 6-12	2.5	31	
98	Strain rate dependence of plastic flow in Ce-based bulk metallic glass during nanoindentation. <i>Journal of Materials Research</i> , 2007 , 22, 258-263	2.5	31	
97	Effect of Titanium on Microstructure and Mechanical Properties of Cu50Zr50\(\mathbb{Z}\) Ti x (2.5\(\mathbb{L}\)\(2.3	31	
96	Effect of Sn on microstructure and mechanical properties of (Ti L u)-based bulk metallic glasses. <i>Philosophical Magazine Letters</i> , 2006 , 86, 479-486	1	31	
95	Mechanism of lamellae deformation and phase rearrangement in ultrafine ETi/FeTi eutectic composites. <i>Acta Materialia</i> , 2015 , 97, 170-179	8.4	30	
94	Formation of ductile ultrafine eutectic structure in TiBeBn alloy. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2007 , 449-451, 737-740	5.3	29	

(2013-2006)

93	Structural short-range order of the ETi phase in bulk TiEe(Sn) nanoeutectic composites. <i>Applied Physics Letters</i> , 2006 , 89, 261917	3.4	28	
92	Lattice distortiondisordering and local amorphization in the dendrites of a Ti66.1Cu8Ni4.8Sn7.2Nb13.9 nanostructuredendrite composite during intersection of shear bands. <i>Applied Physics Letters</i> , 2005 , 86, 201909	3.4	28	
91	Composition Dependence on the Evolution of Nanoeutectic in CoCrFeNiNbx (0.45 / 10.65) High Entropy Alloys. <i>Advanced Engineering Materials</i> , 2018 , 20, 1700908	3.5	28	
90	Oxidation behaviour of Moßi B(Al, Ce) ultrafine-eutectic dendrite composites in the temperature range of 500🛘 00 🛣 C. <i>Intermetallics</i> , 2011 , 19, 1-8	3.5	27	
89	Microstructural investigation of a deformed Ti66.1Cu8Ni4.8Sn7.2Nb13.9 nanostructuredendrite composite. <i>Journal of Alloys and Compounds</i> , 2007 , 434-435, 106-109	5.7	27	
88	Nanostructured Composite Materials with Improved Deformation Behavior. <i>Advanced Engineering Materials</i> , 2005 , 7, 587-596	3.5	27	
87	An assessment on the stability of the eutectic phases in high entropy alloys. <i>Journal of Alloys and Compounds</i> , 2019 , 798, 167-173	5.7	26	
86	Deformation-induced microstructural heterogeneity in monolithic Zr44Ti11Cu9.8Ni10.2Be25 bulk metallic glass. <i>Physica Status Solidi - Rapid Research Letters</i> , 2009 , 3, 46-48	2.5	26	
85	Influence of environment and grain size on magnetic properties of nanocrystalline MnIn ferrite. <i>Journal of Magnetism and Magnetic Materials</i> , 2006 , 306, 9-15	2.8	25	
84	Effect of twin spacing, dislocation density and crystallite size on the strength of nanostructured Ebrass. <i>Journal of Alloys and Compounds</i> , 2015 , 618, 139-145	5.7	24	
83	High strength hexagonal structured dendritic phase reinforced Zr TiN i bulk alloy with enhanced ductility. <i>Applied Physics Letters</i> , 2006 , 88, 201920	3.4	24	
82	Evolution of nanostructure in & Drass upon cryorolling. <i>Materials Science & Dramp; Engineering A: Structural Materials: Properties, Microstructure and Processing,</i> 2011 , 530, 675-679	5.3	23	
81	Effect of local chemistry, structure and length scale of heterogeneities on the mechanical properties of a Ti45Cu40Ni7.5Zr5Sn2.5 bulk metallic glass. <i>Philosophical Magazine Letters</i> , 2008 , 88, 75-	8 ¹ 1	23	
80	High temperature oxidation response of Al/Ce doped Moßiß composites. <i>Intermetallics</i> , 2017 , 83, 101-1	0 95	22	
79	High strength Ni@r(Al) nanoeutectic composites with large plasticity. <i>Intermetallics</i> , 2015 , 63, 51-58	3.5	22	
78	Transient stage oxidation behavior of Mo76Si14B10 alloy at 1150 LC. Corrosion Science, 2013 , 68, 231-2.	37. 8	22	
77	Role of crystalline precipitates on the mechanical properties of (Cu0.50Zr0.50)100\(\text{MAlx} \) (x=4, 5, 7) bulk metallic glasses. <i>Journal of Alloys and Compounds</i> , 2011 , 509, S99-S104	5.7	22	
76	Repository on maternal child health: health portal to improve access to information on maternal child health in India. <i>BMC Public Health</i> , 2013 , 13, 2	4.1	20	

75	Effect of Sn on microstructure and mechanical properties of Ti-Fe-(Sn) ultrafine eutectic composites. <i>Journal of Materials Research</i> , 2010 , 25, 943-956	2.5	20
74	Origin of plasticity in ultrafine lamellar Ti-Fe-(Sn) composites. <i>AIP Advances</i> , 2012 , 2, 032175	1.5	19
73	Nanoscale mechanism and intrinsic structure related deformation of Ti-alloys. <i>Materials Science</i> & <i>amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2008 , 493, 71-78	5.3	19
72	Deformation behavior of a Ti66Cu8Ni4.8Sn7.2Nb14 nanostructured composite containing ductile dendrites. <i>Journal of Alloys and Compounds</i> , 2007 , 434-435, 13-17	5.7	19
71	Ductilization of BMGs by optimization of nanoparticle dispersion. <i>Journal of Alloys and Compounds</i> , 2007 , 434-435, 6-9	5.7	19
70	Nano-/Ultrafine Eutectic in CoCrFeNi(Nb/Ta) High-Entropy Alloys. <i>Transactions of the Indian Institute of Metals</i> , 2018 , 71, 2717-2723	1.2	18
69	Influence of superficial CeO2 coating on high temperature oxidation behavior of TiBALBV. <i>Journal of Alloys and Compounds</i> , 2012 , 519, 106-111	5.7	17
68	Mechanical response of metallic glasses: Insights from in-situ high energy X-ray diffraction. <i>Jom</i> , 2010 , 62, 76-82	2.1	16
67	Strengthening face centered cubic crystals by annealing induced nano-twins. <i>Scientific Reports</i> , 2017 , 7, 17512	4.9	15
66	Evolution and interaction of twins, dislocations and stacking faults in rolled ⊕rass during nanostructuring at sub-zero temperature. <i>AIP Advances</i> , 2014 , 4, 067101	1.5	15
65	Effect of Ce addition on the oxidation behaviour of MoBiBAl ultrafine composites at 1100°C. <i>Scripta Materialia</i> , 2011 , 64, 486-489	5.6	15
64	Correlation between Poisson ratio and Mohr t oulomb coefficient in metallic glasses. <i>Journal of Alloys and Compounds</i> , 2009 , 483, 125-131	5.7	15
63	Effect of prestraining on the deformation and fracture behavior of Zr44Ti11Cu9.8Ni10.2Be25. <i>Intermetallics</i> , 2010 , 18, 1902-1907	3.5	14
62	Microscopic mechanism on the evolution of plasticity in nanolamellar ENi/Ni5Zr eutectic composites. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2016 , 666, 72-79	5.3	13
61	New Fellr Mollall composites with high compressive strength and large plasticity. <i>Acta Materialia</i> , 2007 , 55, 3513-3520	8.4	13
60	Heterogeneous distribution of shear strains in deformed Ti66.1Cu8Ni4.8Sn7.2Nb13.9 nanostructure-dendrite composite. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2005 , 202, 2405-2412	1.6	13
59	Corrosion and pitting behaviour of ultrafine eutectic Tifesn alloys. <i>Journal of Alloys and Compounds</i> , 2010 , 503, 19-24	5.7	12
58	Consolidation and mechanical properties of ball milled Zr50Cu50 glassy ribbons. <i>Journal of Alloys and Compounds</i> , 2009 , 483, 227-230	5.7	12

(2019-2017)

57	Improvement of oxidation resistance of arc-melted Mo 76 Si 14 B 10 by microstructure control upon minor Fe addition. <i>Intermetallics</i> , 2017 , 88, 28-30	3.5	11
56	Toughening mechanisms of a Ti-based nanostructured composite containing ductile dendrites. <i>International Journal of Materials Research</i> , 2005 , 96, 675-680		11
55	Microstructure and size effect in ultrafine (Ti0.705Fe0.295)100\(\text{MSnx}\) (0?x?4at.%) composites. Journal of Alloys and Compounds, 2014 , 585, 54-62	5.7	10
54	Synthesis of mullite-based coatings from alumina and zircon powder mixtures by plasma spraying and laser remelting. <i>Materials Chemistry and Physics</i> , 2015 , 154, 22-29	4.4	10
53	Influence of Nb on the Microstructure and Fracture Toughness of (ZrFe)Nb Nano-Eutectic Composites. <i>Materials</i> , 2018 , 11,	3.5	10
52	Effect of Zr Addition on Microstructure, Hardness and Oxidation Behavior of Arc-Melted and Spark Plasma Sintered Multiphase Mo-Si-B Alloys. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2019 , 50, 2041-2060	2.3	9
51	Tailoring the microstructure and mechanical properties of TiAl alloy using a novel electromagnetic stirring method. <i>Scripta Materialia</i> , 2006 , 55, 1143-1146	5.6	9
50	Effect of Cold Deformation on the Machinability of a Free Cutting Steel. <i>Materials and Manufacturing Processes</i> , 2006 , 21, 333-340	4.1	9
49	Novel In Situ Nanostructure-Dendrite Composites in Zr-Base Multicomponent Alloy System. <i>Materials and Manufacturing Processes</i> , 2004 , 19, 423-437	4.1	9
48	Bacterial aetiology of neonatal meningitis: A study from north-east India. <i>Indian Journal of Medical Research</i> , 2017 , 145, 138-143	2.9	9
47	Effect of Fe addition and moist environment on the high temperature oxidation behavior of Mo76-xSi14B10Fex ($x = 0, 0.5, 1 \text{ at.}\%$) composites. <i>Intermetallics</i> , 2019 , 111, 106498	3.5	8
46	Impact of Microstructural Inhomogenities on the Ductility of Bulk Metallic Glasses. <i>Materials Transactions</i> , 2007 , 48, 1806-1811	1.3	8
45	Strengthening of multicomponent glass-forming alloys by microstructure design. <i>Journal of Non-Crystalline Solids</i> , 2007 , 353, 3742-3749	3.9	8
44	Microstructural comparison of Zr73.5Nb9Cu7Ni1Al9.5 nanostructure-dendrite composites produced by different casting techniques. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2007 , 449-451, 747-751	5.3	7
43	Influence of annealing on the microstructure and hardness of Ti67.79Fe28.36Sn3.85 nanocomposite rods. <i>Scripta Materialia</i> , 2006 , 55, 1087-1090	5.6	7
42	Effect of Cu on local amorphization in bulk NilliZrBi alloys during solidification. <i>Acta Materialia</i> , 2006 , 54, 3141-3150	8.4	7
41	Synthesis of a robust multifunctional composite with concurrent magnetocaloric effect and enhanced energy absorption capabilities through a tailored processing route. <i>Materials and Design</i> , 2020 , 187, 108399	8.1	7
40	Effect of moist environment on the oxidation behavior of Mo76-Si14B10Fe ($x = 0, 0.5, 1$ at.%) ultrafine composites in the range of 700B00 C . Corrosion Science, 2019 , 155, 86-96	6.8	6

39	Metallic glass formation in the Cu47Ti33Zr11Ni8Si1 alloy. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2007 , 444, 257-264	5.3	6
38	Synthesis of crescent shaped heterocycle-fused aromatics via Garratt-Braverman cyclization and their DNA-binding studies. <i>Tetrahedron Letters</i> , 2017 , 58, 2014-2018	2	5
37	Effect of high pressure during the fabrication on the thermal and mechanical properties of amorphous Ni60Nb40 particle-reinforced Al-based metal matrix composites. <i>Journal of Materials Research</i> , 2007 , 22, 1168-1173	2.5	5
36	Tuning of nanostructure by the control of twin density, dislocation density, crystallite size, and stacking fault energy in Cu 100½ Zn x (0½½ ½00 wt%). Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 672, 203-215	5.3	5
35	Precise estimation of glass transition and crystallization temperatures of Zr 55 Cu 30 Ni 5 Al 10 metallic glass using step-scan modulated temperature differential scanning calorimeter. <i>Thermochimica Acta</i> , 2018 , 660, 18-22	2.9	5
34	Effect of cooling rate and composition on the microstructure and mechanical properties of (Ni0.92Zr0.08)100組Alx (0瓜瓜 at.%) ultrafine eutectic composites. <i>Journal of Materials Research</i> , 2019 , 34, 1704-1713	2.5	4
33	Nanoeutectic Composites: Processing, Microstructure and Properties. <i>Transactions of the Indian Institute of Metals</i> , 2015 , 68, 1199-1205	1.2	4
32	Improvement of intrinsic plasticity and strength of Zr55Cu30Ni5Al10 metallic glass by tuning the glass transition temperature. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2019 , 762, 138102	5.3	4
31	Effect of tungsten metal particle sizes on the solubility of molten alloy melt: Experimental observation of Gibbs-Thomson effect in nanocomposites. <i>Applied Physics Letters</i> , 2012 , 101, 124103	3.4	4
30	Interfacial instability-driven amorphizationflanocrystallization in a bulk Ni45Cu5Ti33Zr16Si1 alloy during solidification. <i>Physical Review B</i> , 2005 , 72,	3.3	4
29	Effect of Cold Rolling on the Evolution of Shear Bands and Nanoindentation Hardness in ZrTiCuNiBe Bulk Metallic Glass. <i>Nanomaterials</i> , 2021 , 11,	5.4	4
28	The effect of milling time on the evolution of nanostructure, thermal stability, and magnetocaloric properties of (Ni0.50Fe0.50)70.5B17.7Si7.8Ti4. <i>Journal of Alloys and Compounds</i> , 2019 , 772, 157-163	5.7	4
27	A tool to predict the evolution of phase and Young modulus in high entropy alloys using artificial neural network. <i>Computational Materials Science</i> , 2021 , 197, 110619	3.2	4
26	Correlating the lattice parameter and Curie temperature of ENi in Fe-Ni-base alloys. <i>AIP Advances</i> , 2019 , 9, 055126	1.5	3
25	Accurate measurement of glass transition temperature of Cu47.5Zr47.5Al5 and Zr41.2Ti13.8Cu12.5Ni10Be22.5 using step-scan modulated differential scanning calorimeter. <i>Journal of Alloys and Compounds</i> , 2019 , 800, 314-319	5.7	3
24	Effect of Oxygen Partial Pressure on the Cyclic Oxidation Behavior of Mo76Si14B10. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2013 , 44, 2910-2913	2.3	3
23	Formation of nano-scale Ephase in arc-melted micron-scale dendrite reinforced Zr73.5Nb9Cu7Ni1Al9.5 ultrafine composite during heat treatment. <i>Intermetallics</i> , 2008 , 16, 538-543	3.5	3
22	Influence of additional elements on the development of nanoscale heterogeneities in (TiCu)-based bulk metallic glasses with enhanced ductility. <i>Journal of Materials Research</i> , 2007 , 22, 2223-2229	2.5	3

21	Synthesis, structural and magnetic properties of NiO nanospheres and rGO-NiO nanocomposites and observing magnetocaloric effect in rGO-NiO nanocomposites. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2021 , 265, 115007	3.1	3
20	Enhanced Work Hardening of Cu-Based Bulk Metallic Glass Composites by In Situ Formed Nano-Scale Heterogeneities. <i>Materials Science Forum</i> , 2009 , 633-634, 665-673	0.4	2
19	Effect of cold rolling on the serrated flow behavior of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass during nanoindentation. <i>Journal of Materials Research</i> , 2022 , 37, 976	2.5	2
18	Evolution of microstructure homogeneity and mechanical properties in nano-/ultrafine eutectic CoCrFeNiNb (0.45IIxIID.65) high entropy alloy ingots and cast rods. <i>Journal of Alloys and Compounds</i> , 2022 , 901, 163610	5.7	2
17	Assessing two rapid quenching techniques for the production of La-Fe-Si magnetocaloric alloys in reduced annealing time. <i>Material Design and Processing Communications</i> , 2019 , 1, e96	0.9	1
16	A Few Aspects on the Processing and Deformation Behavior of Advanced Eutectic Alloys. <i>Transactions of the Indian Institute of Metals</i> , 2012 , 65, 571-576	1.2	1
15	Stress-induced martensitic transformation in a Ti45Zr38Al17cast rod. <i>Journal of Physics: Conference Series</i> , 2009 , 144, 012090	0.3	1
14	Deformation and fracture of Ti-base nanostructured composite. <i>International Journal of Materials Research</i> , 2008 , 99, 985-990	0.5	1
13	In Situ Formed Bulk Nanostructured Ti-Base Composites. <i>Journal of Metastable and Nanocrystalline Materials</i> , 2005 , 24-25, 31-36	0.2	1
12	Mechanism of microstructure evolution and spheroidization in ultrafine lamellar CoCrFeNi(Nb0ြb/Ta0.4) eutectic high entropy alloys upon hot deformation. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2022 , 835, 142669	5.3	1
11	Effect of cold rolling on the pressure coefficient of glass transition temperature in bulk metallic glasses. <i>Thermochimica Acta</i> , 2021 , 706, 179071	2.9	1
10	Strain rate sensitivity and deformation mechanism of nano-lamellar ENi/Ni5Zr eutectic at room temperature. <i>Journal of Materials Research</i> , 2020 , 35, 2777-2788	2.5	1
9	Superior oxidation resistance of ultrafine Ni\(\mathbb{I}\)r-(Al) eutectic composites in the temperature range of 500\(\mathbb{B}\)00 \(\mathbb{C}\)C. Journal of Alloys and Compounds, 2021 , 854, 155998	5.7	1
8	Carbon nanotubes, nanochains and quantum dots synthesized through the chemical treatment of charcoal powder. <i>Journal of Molecular Structure</i> , 2021 , 1227, 129419	3.4	1
7	Strengthening ultrafine lamellar Ni-Zr-(Al) eutectic by precipitation hardening. <i>Journal of Alloys and Compounds</i> , 2021 , 882, 160684	5.7	1
6	Effect of Moist Air and Minor Zr Addition on Oxidation Behavior of Arc-Melted Multiphase Moßiß Alloys in the Temperature Range of 1000 LC 1300 LC. Oxidation of Metals, 2020, 93, 483-513	1.6	О
5	Observation of superspin-glass behaviour and metamagnetic transition in spark plasma-sintered Ni50 \square CoxMn40Sn10 (x = 3, 5, 7, and 9 at.%). <i>Journal of Materials Research</i> , 2022 , 37, 1513-1519	2.5	О
4	Effect of testing conditions on the nanomechanical behavior of surface and inner core of as-cast Zr-base bulk metallic glassy plates. <i>Materials Science & Description of Structural Materials:</i> Properties, Microstructure and Processing, 2022 , 845, 143206	5.3	O

3	Observation of a large magnetocaloric effect and suppressed transition in Ti doped Ni-Co-Mn-Sn ribbons upon annealing. <i>Journal of Alloys and Compounds</i> , 2022 , 917, 165490	5.7	Ο
2	How to Improve the Ductility of Nanostructured Materials. <i>Journal of Korean Powder Metallurgy Institute</i> , 2006 , 13, 340-350	0.1	
1	Enhanced magnetocaloric effect in Fe-rich (NixFe1-x)70.5B17.7Si7.8Ti4 (x\(\beta\)\(\text{1D}\).3 and 0.4) mechanically alloyed nanocrystalline powder. <i>Journal of Magnetism and Magnetic Materials</i> , 2022 , 541, 168574	2.8	