Ichiro Mitsuhara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1796994/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Expression of a gene for an MLX56 defense protein derived from mulberry latex confers strong resistance against a broad range of insect pests on transgenic tomato lines. PLoS ONE, 2021, 16, e0239958.	2.5	7
2	Complete Genome Sequences of Two Strains of Xanthomonas campestris pv. campestris Isolated in Japan. Microbiology Resource Announcements, 2020, 9, .	0.6	2
3	Loliolide, a Carotenoid Metabolite, Is a Potential Endogenous Inducer of Herbivore Resistance. Plant Physiology, 2019, 179, 1822-1833.	4.8	49
4	Accumulation of salicylic acid in tomato plant under biological stress affects oviposition preference of <i>Bemisia tabaci</i> . Journal of Plant Interactions, 2019, 14, 73-78.	2.1	12
5	l-Histidine Induces Resistance in Plants to the Bacterial Pathogen <i>Ralstonia solanacearum</i> Partially Through the Activation of Ethylene Signaling. Plant and Cell Physiology, 2016, 57, 1932-1942.	3.1	50
6	Mitogen-activated protein kinase 4-like carrying an MEY motif instead of a TXY motif is involved in ozone tolerance and regulation of stomatal closure in tobacco. Journal of Experimental Botany, 2016, 67, 3471-3479.	4.8	15
7	Analysis on Blast Fungus-Responsive Characters of a Flavonoid Phytoalexin Sakuranetin; Accumulation in Infected Rice Leaves, Antifungal Activity and Detoxification by Fungus. Molecules, 2014, 19, 11404-11418.	3.8	70
8	Jasmonic acid negatively regulates resistance to Tobacco mosaic virus in tobacco. Plant and Cell Physiology, 2013, 54, 1999-2010.	3.1	56
9	Transcriptome Analysis of WIPK/SIPK-Suppressed Plants Reveals Induction by Wounding of Disease Resistance-Related Genes Prior to the Accumulation of Salicylic Acid. Plant and Cell Physiology, 2013, 54, 1005-1015.	3.1	13
10	Tobacco MAP Kinase Phosphatase (NtMKP1) Negatively Regulates Wound Response and Induced Resistance Against Necrotrophic Pathogens and Lepidopteran Herbivores. Molecular Plant-Microbe Interactions, 2013, 26, 668-675.	2.6	31
11	DNA Elements Reducing Transcriptional Gene Silencing Revealed by a Novel Screening Strategy. PLoS ONE, 2013, 8, e54670.	2.5	4
12	Identification of Natural Diterpenes that Inhibit Bacterial Wilt Disease in Tobacco, Tomato and Arabidopsis. Plant and Cell Physiology, 2012, 53, 1432-1444.	3.1	60
13	Identification of a Degradation Intermediate of the Momilactone A Rice Phytoalexin by the Rice Blast Fungus. Bioscience, Biotechnology and Biochemistry, 2012, 76, 414-416.	1.3	9
14	Transcriptome Analysis of Quantitative Resistance-Specific Response upon Ralstonia solanacearum Infection in Tomato. PLoS ONE, 2012, 7, e46763.	2.5	99
15	Evaluation of anti-herbivory genes using an Agrobacterium-mediated transient expression system. Plant Biotechnology, 2012, 29, 495-499.	1.0	6
16	A rice calciumâ€dependent protein kinase OsCPK12 oppositely modulates saltâ€stress tolerance and blast disease resistance. Plant Journal, 2012, 69, 26-36.	5.7	269
17	Cyanide, a Coproduct of Plant Hormone Ethylene Biosynthesis, Contributes to the Resistance of Rice to Blast Fungus Â. Plant Physiology, 2011, 155, 502-514.	4.8	61
18	Identification of an amino acid residue required for differential recognition of a viral movement protein by the Tomato mosaic virus resistance gene Tm-22. Journal of Plant Physiology, 2011, 168, 1142-1145.	3.5	20

ICHIRO MITSUHARA

#	Article	IF	CITATIONS
19	Title is missing!. Kagaku To Seibutsu, 2011, 49, 226-228.	0.0	Ο
20	Phytoalexin Accumulation in the Interaction Between Rice and the Blast Fungus. Molecular Plant-Microbe Interactions, 2010, 23, 1000-1011.	2.6	158
21	Silencing of WIPK and SIPK Mitogen-Activated Protein Kinases Reduces <i>Tobacco mosaic virus</i> Accumulation But Permits Systemic Viral Movement in Tobacco Possessing the <i>N</i> Resistance Gene. Molecular Plant-Microbe Interactions, 2010, 23, 1032-1041.	2.6	36
22	Analyses of the <i>cis</i> â€Regulatory Regions Responsible for the Transcriptional Activation of the <i>N</i> Resistance Gene by <i>Tobacco mosaic virus</i> . Journal of Phytopathology, 2010, 158, 826-828.	1.0	10
23	In Vitro Assembly of Plant RNA-Induced Silencing Complexes Facilitated by Molecular Chaperone HSP90. Molecular Cell, 2010, 39, 282-291.	9.7	288
24	Involvement of two rice ETHYLENE INSENSITIVE3-LIKE genes in wound signaling. Molecular Genetics and Genomics, 2009, 282, 517-29.	2.1	23
25	Characteristic expression of twelve rice PR1 family genes in response to pathogen infection, wounding, and defense-related signal compounds (121/180). Molecular Genetics and Genomics, 2008, 279, 415-427.	2.1	231
26	Involvement of EIN3 homologues in basic PR gene expression and flower development in tobacco plants. Journal of Experimental Botany, 2007, 58, 3671-3678.	4.8	28
27	Probenazole-Induced Accumulation of Salicylic Acid Confers Resistance to Magnaporthe grisea in Adult Rice Plants. Plant and Cell Physiology, 2007, 48, 915-924.	3.1	118
28	Pathogen-Induced Calmodulin Isoforms in Basal Resistance Against Bacterial and Fungal Pathogens in Tobacco. Plant and Cell Physiology, 2007, 48, 414-423.	3.1	112
29	Two novel AP2/ERF domain proteins interact with cis-element VWRE for wound-induced expression of the Tobacco tpoxN1 gene. Plant Journal, 2007, 50, 1079-1092.	5.7	43
30	MAP Kinases Function Downstream of HSP90 and Upstream of Mitochondria in TMV Resistance Gene N-Mediated Hypersensitive Cell Death. Plant and Cell Physiology, 2007, 48, 498-510.	3.1	44
31	Characterization of two rice peroxidase promoters that respond to blast fungus-infection. Molecular Genetics and Genomics, 2007, 278, 709-722.	2.1	30
32	Rapid defense gene expression in both resistant and susceptible rice cultivars by elicitor(s) originating from conidia of blast fungus—Basal resistance response before fungal penetration into host cells. Physiological and Molecular Plant Pathology, 2006, 69, 13-25.	2.5	9
33	Involvement of wound-induced receptor-like protein kinase in wound signal transduction in tobacco plants. Plant Journal, 2006, 47, 249-257.	5.7	31
34	Accumulation of the Two Transcripts of the N gene, Conferring Resistance to Tobacco Mosaic Virus, is Probably Important for N Gene-dependent Hypersensitive Cell Death. Plant and Cell Physiology, 2006, 47, 254-261.	3.1	28
35	A novel wound-responsive cis-element, VWRE, of the vascular system-specific expression of a tobacco peroxidase gene, tpoxN1. Plant Molecular Biology, 2006, 62, 753-768.	3.9	11
36	Genetic studies of transgenic rice plants overproducing an antibacterial peptide show that a high level of transgene expression did not cause inferior effects on host plants. Plant Biotechnology, 2006, 23, 63-69.	1.0	3

Ichiro Mitsuhara

#	Article	IF	CITATIONS
37	A Mitogen-activated Protein Kinase NtMPK4 Activated by SIPKK is Required for Jasmonic Acid Signaling and Involved in Ozone Tolerance via Stomatal Movement in Tobacco. Plant and Cell Physiology, 2005, 46, 1902-1914.	3.1	136
38	Catalytic Activation of the Plant MAPK Phosphatase NtMKP1 by Its Physiological Substrate Salicylic Acid-induced Protein Kinase but Not by Calmodulins. Journal of Biological Chemistry, 2005, 280, 39569-39581.	3.4	44
39	Three Types of Tobacco Calmodulins Characteristically Activate Plant NAD Kinase at Different Ca2+ Concentrations and pHs. Plant and Cell Physiology, 2004, 45, 1371-1379.	3.1	38
40	Ten Rice Peroxidases Redundantly Respond to Multiple Stresses Including Infection with Rice Blast Fungus. Plant and Cell Physiology, 2004, 45, 1442-1452.	3.1	105
41	Plant MAPK Phosphatase Interacts with Calmodulins. Journal of Biological Chemistry, 2004, 279, 928-936.	3.4	76
42	Induced Expression of a Temperature-Sensitive Leucine-Rich Repeat Receptor-like Protein Kinase Gene by Hypersensitive Cell Death and Wounding in Tobacco Plant Carrying the N Resistance Gene. Plant and Cell Physiology, 2002, 43, 266-274.	3.1	9
43	Enhanced Resistance to Salt, Cold and Wound Stresses by Overproduction of Animal Cell Death Suppressors Bcl-xL and Ced-9 in Tobacco Cells — Their Possible Contribution Through Improved Function of Organella. Plant and Cell Physiology, 2002, 43, 992-1005.	3.1	63
44	Release From Post-transcriptional Gene Silencing by Cell Proliferation in Transgenic Tobacco Plants: Possible Mechanism for Noninheritance of the Silencing. Genetics, 2002, 160, 343-352.	2.9	39
45	Transcriptionally and post-transcriptionally regulated response of 13 calmodulin genes to tobacco mosaic virus-induced cell death and wounding in tobacco plant. FEBS Journal, 2001, 268, 3916-3929.	0.2	108
46	An HR-Induced Tobacco Peroxidase Gene Is Responsive to Spermine, but Not to Salicylate, Methyl Jasmonate, and Ethephon. Molecular Plant-Microbe Interactions, 2000, 13, 210-216.	2.6	66
47	Induced Expression of Sarcotoxin IA Enhanced Host Resistance Against Both Bacterial and Fungal Pathogens in Transgenic Tobacco. Molecular Plant-Microbe Interactions, 2000, 13, 860-868.	2.6	61
48	Animal cell-death suppressors Bcl-xL and Ced-9 inhibit cell death in tobacco plants. Current Biology, 1999, 9, 775-S1.	3.9	176
49	Ethylene Promotes the Necrotic Lesion Formation and Basic PR Gene Expression in TMV-Infected Tobacco. Plant and Cell Physiology, 1999, 40, 808-817.	3.1	113
50	Efficient Promoter Cassettes for Enhanced Expression of Foreign Genes in Dicotyledonous and Monocotyledonous Plants. Plant and Cell Physiology, 1996, 37, 49-59.	3.1	551