
## Hester Biemans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1796878/publications.pdf Version: 2024-02-01



HESTED RIEMANS

| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Global water resources affected by human interventions and climate change. Proceedings of the<br>National Academy of Sciences of the United States of America, 2014, 111, 3251-3256.                                           | 7.1  | 971       |
| 2  | Importance and vulnerability of the world's water towers. Nature, 2020, 577, 364-369.                                                                                                                                          | 27.8 | 885       |
| 3  | Impact of reservoirs on river discharge and irrigation water supply during the 20th century. Water Resources Research, 2011, 47, .                                                                                             | 4.2  | 340       |
| 4  | Accounting for environmental flow requirements in global water assessments. Hydrology and Earth<br>System Sciences, 2014, 18, 5041-5059.                                                                                       | 4.9  | 295       |
| 5  | Selecting representative climate models for climate change impact studies: an advanced envelopeâ€based selection approach. International Journal of Climatology, 2016, 36, 3988-4005.                                          | 3.5  | 262       |
| 6  | Global Water Availability and Requirements for Future Food Production. Journal of<br>Hydrometeorology, 2011, 12, 885-899.                                                                                                      | 1.9  | 233       |
| 7  | Exploring SSP land-use dynamics using the IMAGE model: Regional and gridded scenarios of land-use change and land-based climate change mitigation. Global Environmental Change, 2018, 48, 119-135.                             | 7.8  | 202       |
| 8  | Importance of snow and glacier meltwater for agriculture on the Indo-Gangetic Plain. Nature<br>Sustainability, 2019, 2, 594-601.                                                                                               | 23.7 | 197       |
| 9  | Effects of Precipitation Uncertainty on Discharge Calculations for Main River Basins. Journal of<br>Hydrometeorology, 2009, 10, 1011-1025.                                                                                     | 1.9  | 195       |
| 10 | High-resolution assessment of global technical and economic hydropower potential. Nature Energy,<br>2017, 2, 821-828.                                                                                                          | 39.5 | 186       |
| 11 | Reconciling irrigated food production with environmental flows for Sustainable Development Goals implementation. Nature Communications, 2017, 8, 15900.                                                                        | 12.8 | 168       |
| 12 | The global nexus of food–trade–water sustaining environmental flows by 2050. Nature Sustainability,<br>2019, 2, 499-507.                                                                                                       | 23.7 | 161       |
| 13 | LPJmL4 – a dynamic global vegetation model with managed land – PartÂ1: Model description.<br>Geoscientific Model Development, 2018, 11, 1343-1375.                                                                             | 3.6  | 140       |
| 14 | The need for bottom-up assessments of climate risks and adaptation in climate-sensitive regions.<br>Nature Climate Change, 2019, 9, 503-511.                                                                                   | 18.8 | 130       |
| 15 | Adaptation to changing water resources in the Ganges basin, northern India. Environmental Science and Policy, 2011, 14, 758-769.                                                                                               | 4.9  | 122       |
| 16 | Snowmelt contributions to discharge of the Ganges. Science of the Total Environment, 2013, 468-469, S93-S101.                                                                                                                  | 8.0  | 86        |
| 17 | Integrated scenarios to support analysis of the food–energy–water nexus. Nature Sustainability, 2019,<br>2, 1132-1141.                                                                                                         | 23.7 | 79        |
| 18 | Impacts of future deforestation and climate change on the hydrology of the Amazon Basin: a<br>multi-model analysis with a new set of land-cover change scenarios. Hydrology and Earth System<br>Sciences, 2017, 21, 1455-1475. | 4.9  | 69        |

Hester Biemans

| #  | Article                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | South Asian river basins in a 1.5°C warmer world. Regional Environmental Change, 2019, 19, 833-847.                                                                                                   | 2.9  | 55        |
| 20 | Climate change vs. socio-economic development: understanding the future South Asian water gap.<br>Hydrology and Earth System Sciences, 2018, 22, 6297-6321.                                           | 4.9  | 54        |
| 21 | A Global Analysis of Future Water Deficit Based On Different Allocation Mechanisms. Water<br>Resources Research, 2018, 54, 5803-5824.                                                                 | 4.2  | 42        |
| 22 | Crop-specific seasonal estimates of irrigation-water demand in South Asia. Hydrology and Earth<br>System Sciences, 2016, 20, 1971-1982.                                                               | 4.9  | 40        |
| 23 | South Asian agriculture increasingly dependent on meltwater and groundwater. Nature Climate<br>Change, 2022, 12, 566-573.                                                                             | 18.8 | 38        |
| 24 | Flexible Strategies for Coping with Rainfall Variability: Seasonal Adjustments in Cropped Area in the<br>Ganges Basin. PLoS ONE, 2016, 11, e0149397.                                                  | 2.5  | 21        |
| 25 | Seasonal streamflow forecasts for Europe – Part I: Hindcast verification with pseudo- and real observations. Hydrology and Earth System Sciences, 2018, 22, 3453-3472.                                | 4.9  | 19        |
| 26 | A systematic framework for the assessment of sustainable hydropower potential in a river basin – The case of the upper Indus. Science of the Total Environment, 2021, 786, 147142.                    | 8.0  | 18        |
| 27 | Future upstream water consumption and its impact on downstream water availability in the transboundary Indus Basin. Hydrology and Earth System Sciences, 2022, 26, 861-883.                           | 4.9  | 16        |
| 28 | Going local: Evaluating and regionalizing a global hydrological model's simulation of river flows in<br>a medium-sized East African basin. Journal of Hydrology: Regional Studies, 2018, 19, 349-364. | 2.4  | 13        |
| 29 | Financial Feasibility of Water Conservation in Agriculture. Earth's Future, 2021, 9, e2020EF001726.                                                                                                   | 6.3  | 10        |
| 30 | From narratives to numbers: Spatial downscaling and quantification of future water, food &<br>energy security requirements in the Indus basin. Futures, 2021, 133, 102831.                            | 2.5  | 10        |
| 31 | Advances in global hydrology–crop modelling to support the UN's Sustainable Development Goals in<br>South Asia. Current Opinion in Environmental Sustainability, 2019, 40, 108-116.                   | 6.3  | 8         |
| 32 | Water conservation can reduce future water-energy-food-environment trade-offs in a medium-sized<br>African river basin. Agricultural Water Management, 2022, 266, 107548.                             | 5.6  | 8         |
| 33 | Trade-offs between water needs for food, utilities, and the environment—a nexus quantification at<br>different scales. Environmental Research Letters, 2021, 16, 115003.                              | 5.2  | 5         |