Michal Stanek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1796709/publications.pdf

Version: 2024-02-01

1307366 1058333 81 326 7 14 citations g-index h-index papers 84 84 84 218 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Enhancement of the mechanical properties of HDPE mineral nanocomposites by filler particles modulation of the matrix plastic/elastic behavior. Nanotechnology Reviews, 2022, 11, 312-320.	2.6	10
2	The Influence of Surface Quality on Flow Length and Micro-Mechanical Properties of Polycarbonate. Materials, 2021, 14, 5910.	1.3	3
3	Influence of Cross-Linking Agent Concentration/Beta Radiation Surface Modification on the Micro-Mechanical Properties of Polyamide 6. Materials, 2021, 14, 6407.	1.3	4
4	Polyamide Surface Layer Nano-Indentation and Thermal Properties Modified by Irradiation. Materials, 2020, 13, 2915.	1.3	9
5	Nano-Mechanical Properties of Surface Layers of Polyethylene Modified by Irradiation. Materials, 2020, 13, 929.	1.3	5
6	IMPROVEMENT OF POLYMER SURFACE LAYER BY ELECTRON RADIATION. MM Science Journal, 2020, 2020, 3882-3886.	0.2	0
7	POLYOXYMETHYLENE FLOW ENHANCEMENT USING THE ROUGH SURFACE INJECTION MOULD CAVITY. MM Science Journal, 2020, 2020, 3878-3881.	0.2	3
8	UTILIZING INSTRUMENTED HARDNESS TEST TO MEASURE PROPERTIES OF POLYAMIDE SURFACE LAYER. MM Science Journal, 2020, 2020, 3887-3891.	0.2	0
9	Study of the material engineering properties of high-density poly(ethylene)/perlite nanocomposite materials. Nanotechnology Reviews, 2020, 9, 1491-1499.	2.6	10
10	Measurement of Modified Surface Properties (Micro-Creep) of Polyamide by Modern Indentation Method. Materials Science Forum, 2019, 952, 163-171.	0.3	1
11	Improving Surface Properties of Linear Polyethylene by Radiation Measured by Ultra-Nano Indentation Test. Materials Science Forum, 2019, 952, 172-179.	0.3	O
12	Fluidity of Rubber and TPE Influenced by Mold Surface Roughness. Materials Science Forum, 2019, 952, 198-206.	0.3	0
13	The Thermal Energy Influence on the Surface Layer of Construction Steels during Laser Beam Cutting. Manufacturing Technology, 2019, 19, 123-128.	0.2	4
14	THE INFLUENCE OF THE NANO-FILLER FILLING AMOUNT ON CREEP PROPERTIES. MM Science Journal, 2019, 2019, 2827-2831.	0.2	0
15	Polymer Flow Influenced by Mold Cavity Surface Roughness. Manufacturing Technology, 2019, 19, 327-331.	0.2	4
16	Effect of the Pigment Concentration on the Dimensional Stability and the Melt Flow Index of Polycarbonate. Manufacturing Technology, 2019, 19, 404-408.	0.2	2
17	The Influence of Finishing Operations on the Surface Quality of Injected Parts. Manufacturing Technology, 2019, 19, 477-481.	0.2	2
18	Effect of filler particle shape on plastic-elastic mechanical behavior of high density poly(ethylene)/mica and poly(ethylene)/wollastonite composites. Composites Part B: Engineering, 2018, 141, 92-99.	5.9	50

#	Article	IF	Citations
19	How the surface quality of injection mold influence polymer flow. MATEC Web of Conferences, 2018, 210, 02042.	0.1	1
20	The influence of the mold quality and injection pressure on the product quality. MATEC Web of Conferences, 2018, 210, 02043.	0.1	0
21	The Effect of Irradiation on Mechanical and Thermal Properties of Selected Types of Polymers. Polymers, 2018, 10, 158.	2.0	40
22	Evaluation of nano-mechanical properties and morphology of filled polypropylene modified by irradiation. MATEC Web of Conferences, 2017, 125, 02042.	0.1	2
23	Influence of electron beam irradiated on the surface properties of polyamide measured by micro-indentation test. MATEC Web of Conferences, 2017, 125, 02043.	0.1	0
24	Effect of Recycled Particle Size to Micro-Hardness Properties of Styrene Acrylonitrile. Defect and Diffusion Forum, 2016, 368, 154-157.	0.4	1
25	Micro-Hardness of PBT Influenced by Beta Radiation. MATEC Web of Conferences, 2016, 76, 02024.	0.1	6
26	Mechanical Properties of Injection Molded and Compression Molded Samples from Nature-Butadiene Rubber. MATEC Web of Conferences, 2016, 76, 02023.	0.1	1
27	Influence of length of glass fibers in recycled polypropylene on tensile properties. MATEC Web of Conferences, 2016, 76, 02021.	0.1	1
28	The Influence of runner system on production of injection molds. MATEC Web of Conferences, 2016, 76, 02022.	0.1	1
29	Micro-hardness of surface layer of irradiated Polybutene Terephthalate (PBT). MATEC Web of Conferences, 2016, 76, 02018.	0.1	2
30	Nano-hardness of Electron Beam Irradiated Polyamide 11. MATEC Web of Conferences, 2016, 76, 02030.	0.1	0
31	Polymer fluidity influenced by type and amount of filler. MATEC Web of Conferences, 2016, 76, 02020.	0.1	2
32	The Effect of Cross-Linking on Nano-Mechanical Properties of Polyamide. Key Engineering Materials, 2016, 699, 37-42.	0.4	4
33	Evaluation of Mechanical Properties of Surface Layer Injection Molded Polypropylene by Nanoindentation Test. Key Engineering Materials, 2016, 699, 86-90.	0.4	0
34	THE BEHAVIOUR OF CROSS-LINKING FILLED PBT MEASURED BY NANO-HARDNESS. MM Science Journal, 2016, 2016, 1110-1113.	0.2	3
35	Surface Layer Micro-Hardness of Modified LDPE by Radiation Cross-Linking after Temperature Load. Key Engineering Materials, 2015, 662, 177-180.	0.4	3
36	The Effect of Technology on Micromechanical Properties of Rubber. Key Engineering Materials, 2015, 662, 261-264.	0.4	0

#	Article	IF	Citations
37	Influence of Recycled Particle Size to Tensile Properties of Polyamide 6. Applied Mechanics and Materials, 2015, 752-753, 304-307.	0.2	5
38	Hardness/Microhardness Properties of HDPE Blends. Key Engineering Materials, 2015, 662, 181-184.	0.4	4
39	Mechanical Properties of Rubber Samples. Key Engineering Materials, 2014, 606, 249-252.	0.4	4
40	Effect of Beta Low Irradiation Doses on the Micromechanical Properties of Surface Layer of LDPE. Advanced Materials Research, 2014, 1025-1026, 405-409.	0.3	0
41	The Influence of the Production Process on Mechanical Properties of Rubber Testing Samples. Advanced Materials Research, 2014, 1025-1026, 37-41.	0.3	O
42	Influence of Recycled Irradiated HDPE on Mechanical Behavior of LDPE/Hdpex Blends. Advanced Materials Research, 2014, 1025-1026, 265-269.	0.3	3
43	Size Effect of Recycled Material to Tensile Properties of PC. Advanced Materials Research, 2014, 1025-1026, 278-282.	0.3	3
44	Behavior of Recycled Material at Higher Temperature in Compression Test. Advanced Materials Research, 2014, 1025-1026, 274-277.	0.3	1
45	Ionizing Radiation Effect of HDPE Measured by Nano-Hardness. Advanced Materials Research, 2014, 1025-1026, 551-554.	0.3	O
46	Strength of Bonded Joints of Linear Low – Density Polyethylene after Radiation Cross – Linking. Advanced Materials Research, 2014, 1025-1026, 615-620.	0.3	2
47	Effect of Ionizing Beta Radiation on the Strength of Bonded Joints of Polycarbonate. Advanced Materials Research, 2014, 1025-1026, 251-255.	0.3	2
48	Effect of low doses beta irradiation on thermal, micro and macro mechanical properties of irradiated polypropylene. Radiation Physics and Chemistry, 2014, 102, 171-177.	1.4	7
49	The effect of beta irradiation on morphology and micro hardness of polypropylene thin layers. Thin Solid Films, 2013, 530, 49-52.	0.8	56
50	lonizing Radiation Effect on PMMA Measured by Microhardness. Key Engineering Materials, 2013, 586, 198-201.	0.4	3
51	Effect of rheological parameters on curing rate during NBR injection molding. , 2013, , .		O
52	Mold Cavity Roughness vs. Flow of Polymer. , 2009, , .		0
53	Effect of Beta Irradiation on Microhardness of Polyamide 6. Key Engineering Materials, 0, 586, 218-221.	0.4	5
54	Effect of Beta Irradiation on the Strength of Bonded Joints of HDPE. Key Engineering Materials, 0, 586, 79-82.	0.4	12

#	Article	IF	CITATIONS
55	Effect of Beta Low Irradiation Doses on the Filled PA66 Measured by Micro-Indentation Test. Advanced Materials Research, 0, 1025-1026, 415-418.	0.3	3
56	Utilization of Terahertz Spectroscopy for Optical Behavior Determination of Recycled Modified HDPE. Advanced Materials Research, 0, 1025-1026, 547-550.	0.3	0
57	Nanohardness of Electron Beam Irradiated Polyamide 6.6. Key Engineering Materials, 0, 606, 257-260.	0.4	1
58	Corelation of Results of Creep and Micro-Indentation Creep for PP-Copo. Key Engineering Materials, 0, 606, 233-236.	0.4	0
59	Nanohardness of Electron Beam Irradiated HDPE. Advanced Materials Research, 0, 1025-1026, 410-414.	0.3	0
60	Hardness and Micro-Indentation Hardness Comparison of Recycled Modified HDPE. Key Engineering Materials, 0, 606, 217-220.	0.4	8
61	Creep of Radiation Cross Linked HDPE at Elevated Temperature. Advanced Materials Research, 0, 1025-1026, 555-558.	0.3	0
62	Injection Molding of Rubber Compound Influenced by Injection Mold Surface Roughness. Advanced Materials Research, 0, 1025-1026, 283-287.	0.3	2
63	Creep Test Evalutation. Advanced Materials Research, 0, 1025-1026, 270-273.	0.3	0
64	Micro-Hardness and Morphology of LDPE Influenced by Beta Radiation. Key Engineering Materials, 0, 606, 253-256.	0.4	6
65	Tensile Behaviour of Modified PBT by Radiation Cross-Linking. Advanced Materials Research, 0, 1025-1026, 261-264.	0.3	3
66	Temperature Stability of Modified PBT by Radiation Cross-Linking. Advanced Materials Research, 0, 1025-1026, 256-260.	0.3	8
67	Effect of High Doses Beta Irradiation on the Micromechanical Properties of Surface Layer of Glass-Filled Polypropylene. Key Engineering Materials, 0, 662, 185-188.	0.4	3
68	Micro-Indentation Test and Morphology of Electron Beam Irradiated HDPE. Key Engineering Materials, 0, 662, 189-192.	0.4	3
69	The Behaviour of Recycled Material with Particles of Various Sizes of Polyamide 6 to Micro Hardness. Key Engineering Materials, 0, 662, 225-228.	0.4	0
70	Mechanical Properties of Injection Molded Rubber Testing Samples. Applied Mechanics and Materials, 0, 752-753, 308-311.	0.2	0
71	Influence of Content of Crosslinking Agent on the Micromechanical Properties of Glass-Filled Polyamide 6. Applied Mechanics and Materials, 0, 752-753, 357-362.	0.2	1
72	The Behaviour of Cross-Linking Filled PP to Micro-Indentation Test. Defect and Diffusion Forum, 0, 368, 138-141.	0.4	1

#	Article	IF	CITATIONS
73	The Behaviour of Cross-Linking Filled PA66 by Micro-Indentation Test. Key Engineering Materials, 0, 699, 43-48.	0.4	O
74	Micro-Hardness of Irradiated Polyamide. Defect and Diffusion Forum, 0, 368, 162-165.	0.4	0
75	Study of Tensile Properties of Recycled Polypropylene with Glass Fibers at Different Temperature. Key Engineering Materials, 0, 756, 11-18.	0.4	1
76	Surface Properties of Crosslinking Polyamide Measured by Micro-Indentation Test. Materials Science Forum, 0, 919, 111-119.	0.3	0
77	Study of Nano-Creep of Unfilled and Filled Cross-Linking Polypropylene. Materials Science Forum, 0, 919, 103-110.	0.3	2
78	Behavior of Recycled Polypropylene with Glass Fibers at Different Temperature and their Charpy Impact and Hardness Properties. Materials Science Forum, 0, 919, 136-143.	0.3	1
79	Influence of Nano-Filler Type on Technological Processing and Resulting Mechanical Properties. Materials Science Forum, 0, 952, 180-187.	0.3	0
80	LOCAL NANO-MECHANICAL PROPERTIES OF CROSS-LINKED POLYBUTYLENE. Acta Polytechnica CTU Proceedings, 0, 27, 112-115.	0.3	0
81	ELECTRON RADIATION EFFECT ON INDENTATION CREEP OF CONSTRUCTION POLYMERS. Acta Polytechnica CTU Proceedings, 0, 27, 116-120.	0.3	1