
Aleksandra Szuplewska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1796513/publications.pdf Version: 2024-02-01

1Future Applications of MXenes in Biotechnology, Nanomedicine, and Sensors. Trends in Biotechnology, 2020, 38, 264-279.4.916122D Ti2C (MXene) as a novel highly efficient and selective agent for photothermal therapy. Materials Science and Engineering C, 2019, 98, 874-886.3.81593Novel 2D MBenesâ€"Synthesis, Structure, and Biotechnological Potential. Advanced Functional Materials, 2021, 31, 2103048.7.8674On tuning the cytotoxicity of Ti _{35Engineering of 2D Ti3C2 MXene Surface Charge and its Influence on Biological Properties. Materials, 2020, 13, 2347.1.3496Juggling Surface Charges of 2D Niobium Carbide MXenes for a Reactive Oxygen Species Scavenging and Effective Targeting of the Malignant Melanoma Cell Cycle into Programmed Cell Death. ACS Sustainable Chemistry and Engineering, 2020, 8, 7942-7951.3.238}	TIONS
2 Science and Engineering C, 2019, 98, 874-886. 3.8 139 3 Novel 2D MBenesâ€"Synthesis, Structure, and Biotechnological Potential. Advanced Functional 7.8 67 3 On tuning the cytotoxicity of Ti ₃ C ₂ (MXene) flakes to cancerous and benign cells by post-delamination surface modifications. 2D Materials, 2020, 7, 025018. 2.0 63 4 On tuning the cytotoxicity of Ti ₃ C ₂ (MXene) flakes to cancerous and benign cells by post-delamination surface modifications. 2D Materials, 2020, 7, 025018. 2.0 63 5 Engineering of 2D Ti3C2 MXene Surface Charge and its Influence on Biological Properties. Materials, 2020, 13, 2347. 1.3 49 6 Juggling Surface Charges of 2D Niobium Carbide MXenes for a Reactive Oxygen Species Scavenging and Effective Targeting of the Malignant Melanoma Cell Cycle into Programmed Cell Death. ACS Sustainable Chemistry and Engineering, 2020, 8, 7942-7951. 3.2 38 7 The 10th anniversary of MXenes: Challenges and prospects for their surface modification toward 66 89	
3 Materials, 2021, 31, 2103048. 7.8 67 4 On tuning the cytotoxicity of Ti ₃ C ₂ (MXene) flakes to cancerous and benign cells by post-delamination surface modifications. 2D Materials, 2020, 7, 025018. 2.0 63 5 Engineering of 2D Ti3C2 MXene Surface Charge and its Influence on Biological Properties. Materials, 2020, 13, 2347. 1.3 49 6 Juggling Surface Charges of 2D Niobium Carbide MXenes for a Reactive Oxygen Species Scavenging and Effective Targeting of the Malignant Melanoma Cell Cycle into Programmed Cell Death. ACS 3.2 38 7 The 10th anniversary of MXenes: Challenges and prospects for their surface modification toward 60 60	
 ⁴ cells by post-delamination surface modifications. 2D Materials, 2020, 7, 025018. ⁵ Engineering of 2D Ti3C2 MXene Surface Charge and its Influence on Biological Properties. Materials, 2020, 13, 2347. ⁶ Juggling Surface Charges of 2D Niobium Carbide MXenes for a Reactive Oxygen Species Scavenging and Effective Targeting of the Malignant Melanoma Cell Cycle into Programmed Cell Death. ACS 3.2 38 ⁷ The 10th anniversary of MXenes: Challenges and prospects for their surface modification toward 	
3 2020, 13, 2347. 1.3 49 4 Juggling Surface Charges of 2D Niobium Carbide MXenes for a Reactive Oxygen Species Scavenging and Effective Targeting of the Malignant Melanoma Cell Cycle into Programmed Cell Death. ACS 3.2 38 5 Sustainable Chemistry and Engineering, 2020, 8, 7942-7951. 3.2 38 7 The 10th anniversary of MXenes: Challenges and prospects for their surface modification toward 66 90	
6 Effective Targeting of the Malignant Melanoma Cell Cycle into Programmed Cell Death. ACS 3.2 38 Sustainable Chemistry and Engineering, 2020, 8, 7942-7951. The 10th anniversary of MXenes: Challenges and prospects for their surface modification toward 6 00	
⁷ future biotechnological applications. Advanced Drug Delivery Reviews, 2022, 182, 114099. 6.6 28	
8 Synthesis, characterization and biophysical evaluation of the 2D Ti2CTx MXene using 3D spheroid-type 2.3 26 cultures. Ceramics International, 2021, 47, 22567-22577.	
9 Magnetic field-assisted selective delivery of doxorubicin to cancer cells using magnetoliposomes as 1.3 25 drug nanocarriers. Nanotechnology, 2019, 30, 315101.	
Studying pharmacodynamic effects in cell cultures by chemical fingerprinting â°' SIA electronic tongue versus 2D fluorescence soft sensor. Sensors and Actuators B: Chemical, 2018, 272, 264-273.4.012	
11 Soapwort (Saponaria officinalis L.) Extract vs. Synthetic Surfactants—Effect on Skin-Mimetic Models. 1.7 3 Molecules, 2021, 26, 5628.	
 lon Chromatographic Fingerprinting of STC-1 Cellular Response for Taste Sensing. Sensors, 2019, 19, 2.1 2 1062. 	
13 Effect of the oat, horse chestnut, cowherb, soy, quinoa and soapwort extracts on skinâ€mimicking 1.0 2 monolayers and cell lines. Journal of Surfactants and Detergents, 0, , .	

14 Organ-on-a-chip Systems. , 2018, , 55-78.

0