Thomas G Wilson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1796376/publications.pdf

Version: 2024-02-01

361413 434195 31 983 20 31 citations h-index g-index papers 32 32 32 1182 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Six transiting planets and a chain of Laplace resonances in TOI-178. Astronomy and Astrophysics, 2021, 649, A26.	5.1	94
2	TESS Hunt for Young and Maturing Exoplanets (THYME). III. A Two-planet System in the 400 Myr Ursa Major Group. Astronomical Journal, 2020, 160, 179.	4.7	68
3	The unbiased frequency of planetary signatures around single and binary white dwarfs using Spitzer and Hubble. Monthly Notices of the Royal Astronomical Society, 2019, 487, 133-146.	4.4	62
4	The hot dayside and asymmetric transit of WASP-189 b seen by CHEOPS. Astronomy and Astrophysics, 2020, 643, A94.	5.1	61
5	The Pristine survey – VI. The first three years of medium-resolution follow-up spectroscopy of Pristine EMP star candidates. Monthly Notices of the Royal Astronomical Society, 2019, 490, 2241-2253.	4.4	51
6	Transit detection of the long-period volatile-rich super-Earth $\hat{l}/22$ Lupi d with CHEOPS. Nature Astronomy, 2021, 5, 775-787.	10.1	51
7	CHEOPS observations of the HD 108236 planetary system: a fifth planet, improved ephemerides, and planetary radii. Astronomy and Astrophysics, 2021, 646, A157.	5.1	47
8	The Pristine survey $\hat{a}\in X$. A large population of low-metallicity stars permeates the Galactic disc. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 497, L7-L12.	3.3	46
9	Analysis of Early Science observations with the CHaracterising ExOPlanets Satellite (<i>CHEOPS</i>) using <scp>pycheops</scp> . Monthly Notices of the Royal Astronomical Society, 2022, 514, 77-104.	4.4	38
10	Infrared Variability of Two Dusty White Dwarfs. Astrophysical Journal, 2018, 866, 108.	4.5	35
11	Dust production and depletion in evolved planetary systems. Monthly Notices of the Royal Astronomical Society, 2018, 481, 2601-2611.	4.4	35
12	WASP-186 and WASP-187: two hot Jupiters discovered by SuperWASP and SOPHIE with additional observations by TESS. Monthly Notices of the Royal Astronomical Society, 2020, 499, 428-440.	4.4	32
13	An unusually low density ultra-short period super-Earth and three mini-Neptunes around the old star TOI-561. Monthly Notices of the Royal Astronomical Society, 2021, 501, 4148-4166.	4.4	32
14	Detection of Ongoing Mass Loss from HD 63433c, a Young Mini-Neptune. Astronomical Journal, 2022, 163, 68.	4.7	31
15	Most white dwarfs with detectable dust discs show infrared variability. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 484, L109-L113.	3.3	30
16	A pair of sub-Neptunes transiting the bright K-dwarf TOI-1064 characterized with <i>CHEOPS</i> Monthly Notices of the Royal Astronomical Society, 2022, 511, 1043-1071.	4.4	30
17	The atmosphere and architecture of WASP-189 b probed by its CHEOPS phase curve. Astronomy and Astrophysics, 2022, 659, A74.	5.1	26
18	Spi-OPS: <i>Spitzer</i> and CHEOPS confirm the near-polar orbit of MASCARA-1 b and reveal a hint of dayside reflection. Astronomy and Astrophysics, 2022, 658, A75.	5.1	25

#	Article	lF	CITATIONS
19	The dust never settles: collisional production of gas and dust in evolved planetary systems. Monthly Notices of the Royal Astronomical Society, 2020, 496, 5233-5242.	4.4	22
20	K2-111: an old system with two planets in near-resonanceâ€. Monthly Notices of the Royal Astronomical Society, 2020, 499, 5004-5021.	4.4	22
21	Detection of the tidal deformation of WASP-103b at 3 <i>i\hat{f}</i> i) with CHEOPS. Astronomy and Astrophysics, 2022, 657, A52.	5.1	22
22	Exploiting timing capabilities of the CHEOPS mission with warm-Jupiter planets. Monthly Notices of the Royal Astronomical Society, 2021, 506, 3810-3830.	4.4	18
23	A search for transiting planets around hot subdwarfs. Astronomy and Astrophysics, 2021, 650, A205.	5.1	18
24	Investigating the architecture and internal structure of the TOI-561 system planets with CHEOPS, HARPS-N, and TESS. Monthly Notices of the Royal Astronomical Society, 2022, 511, 4551-4571.	4.4	17
25	Relentless and complex transits from a planetesimal debris disc. Monthly Notices of the Royal Astronomical Society, 2022, 511, 1647-1666.	4.4	16
26	The EBLM project – VIII. First results for M-dwarf mass, radius, and effective temperature measurements using <i>CHEOPS</i> light curves. Monthly Notices of the Royal Astronomical Society, 2021, 506, 306-322.	4.4	15
27	Dwarf carbon stars are likely metal-poor binaries and unlikely hosts to carbon planets. Monthly Notices of the Royal Astronomical Society, 2018, 479, 3873-3878.	4.4	12
28	<i>Herschel</i> /SPIRE observations of water production rates and ortho-to-para ratios in comets. Monthly Notices of the Royal Astronomical Society, 2017, 466, 1954-1962.	4.4	8
29	A gas-phase primordial origin of O2 in comet 67P/Churyumov-Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2019, 486, 10-20.	4.4	8
30	The impact of two non-transiting planets and stellar activity on mass determinations for the super-Earth CoRoT-7b. Monthly Notices of the Royal Astronomical Society, 2022, 515, 3975-3995.	4.4	6
31	Carbon-enhanced stars with short orbital and spin periods. Monthly Notices of the Royal Astronomical Society, 2021, 506, 4877-4892.	4.4	5