Wei Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1796182/publications.pdf

Version: 2024-02-01

		136950]	155660
88	3,278	32		55
papers	citations	h-index		g-index
89	89	89		3169
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Porous Graphitic Carbon Nanosheets Derived from Cornstalk Biomass for Advanced Supercapacitors. ChemSusChem, 2013, 6, 880-889.	6.8	257
2	Microwave absorption properties and mechanism of cagelike ZnOâ^•SiO2 nanocomposites. Applied Physics Letters, 2007, 91, .	3.3	249
3	Ultra-thin and highly flexible cellulose nanofiber/silver nanowire conductive paper for effective electromagnetic interference shielding. Composites Part A: Applied Science and Manufacturing, 2020, 135, 105960.	7.6	144
4	Hydrazine-Linked Convergent Self-Assembly of Sophisticated Concave Polyhedrons of β-Ni(OH) and NiO from Nanoplate Building Blocks">surnal of the American Chemical Society , 2009, 131, 2959-2964.	13.7	137
5	Electrospun fibrous materials and their applications for electromagnetic interference shielding: A review. Composites Part A: Applied Science and Manufacturing, 2021, 143, 106309.	7.6	130
6	Silicon carbide nano-fibers in-situ grown on carbon fibers for enhanced microwave absorption properties. Ceramics International, 2017, 43, 5628-5634.	4.8	117
7	Preparation and electrochemical properties of nanocable-like Nb2O5/surface-modified carbon nanotubes composites for anode materials in lithium ion batteries. Electrochimica Acta, 2017, 246, 1088-1096.	5.2	99
8	Carbon fiber/Si3N4 composites with SiC nanofiber interphase for enhanced microwave absorption properties. Ceramics International, 2017, 43, 12328-12332.	4.8	88
9	Enhanced high-temperature dielectric properties and microwave absorption of SiC nanofibers modified Si3N4 ceramics within the gigahertz range. Ceramics International, 2018, 44, 12301-12307.	4.8	85
10	Rational design of multi-shell hollow carbon submicrospheres for high-performance microwave absorbers. Carbon, 2021, 175, 233-242.	10.3	85
11	Porous carbons derived from microalgae with enhanced electrochemical performance for lithium-ion batteries. Electrochimica Acta, 2016, 194, 10-16.	5.2	82
12	Microwave synthesis of Al-doped SiC powders and study of their dielectric properties. Materials Research Bulletin, 2010, 45, 247-250.	5.2	80
13	Bean-dreg-derived carbon materials used as superior anode material for lithium-ion batteries. Electrochimica Acta, 2016, 222, 551-560.	5.2	68
14	Folded-hand silicon/carbon three-dimensional networks as a binder-free advanced anode for high-performance lithium-ion batteries. Chemical Engineering Journal, 2018, 353, 666-678.	12.7	66
15	Highâ€temperature electromagnetic wave absorption properties of C _f /SiCNFs/Si ₃ N ₄ composites. Journal of the American Ceramic Society, 2020, 103, 6822-6832.	3.8	66
16	Controllable preparation of highly uniform CuCo 2 S 4 materials as battery electrode for energy storage with enhanced electrochemical performances. Electrochimica Acta, 2017, 249, 64-71.	5.2	61
17	Mechanical and electromagnetic wave absorption properties of Cf-Si3N4 ceramics with PyC/SiC interphases. Journal of Materials Science and Technology, 2019, 35, 2809-2813.	10.7	53
18	Fatigue behavior and residual strength evolution of 2.5D C/C-SiC composites. Journal of the European Ceramic Society, 2016, 36, 3977-3985.	5.7	52

#	Article	IF	Citations
19	Microstructures, dielectric response and microwave absorption properties of polycarbosilane derived SiC powders. Ceramics International, 2018, 44, 3606-3613.	4.8	52
20	A low-cost SPEEK-K type membrane for neutral aqueous zinc-iron redox flow battery. Surface and Coatings Technology, 2019, 358, 190-194.	4.8	50
21	LiFePO4/C ultra-thin nano-flakes with ultra-high rate capability and ultra-long cycling life for lithium ion batteries. Journal of Alloys and Compounds, 2018, 749, 1063-1070.	5.5	46
22	Facile preparation of CNTs microspheres as improved carbon absorbers for high-efficiency electromagnetic wave absorption. Ceramics International, 2021, 47, 10013-10018.	4.8	46
23	Dielectric properties of BN modified carbon fibers by dip-coating. Ceramics International, 2013, 39, 6569-6576.	4.8	42
24	Mechanical behavior of LSI based C/C-SiC composites subjected to flexural loadings. Composites Part A: Applied Science and Manufacturing, 2017, 95, 315-324.	7.6	41
25	Nitrogen/sulfur co-doped ordered carbon nanoarrays for superior sulfur hosts in lithium-sulfur batteries. Journal of Colloid and Interface Science, 2019, 554, 711-721.	9.4	41
26	Comparison in dielectric and microwave absorption properties of SiC coated carbon fibers with PyC and BN interphases. Surface and Coatings Technology, 2019, 359, 272-277.	4.8	41
27	In-situ synthesis of ternary layered Y3Si2C2 ceramic on silicon carbide fiber for enhanced electromagnetic wave absorption. Ceramics International, 2022, 48, 1908-1915.	4.8	41
28	Box-implanted Nb2O5 nanorods as superior anode materials in lithium ion batteries. Ceramics International, 2017, 43, 12388-12395.	4.8	37
29	Microstructure and properties of plain-weave carbon fabric reinforced ceramic composites containing Cu-Si alloy. Composites Part B: Engineering, 2018, 145, 129-135.	12.0	37
30	Microstructural evolution of SiC coating on C/C composites exposed to $1500 \hat{a} \in \hat{A}^{\circ}C$ in ambient air. Ceramics International, 2019, 45, 854-860.	4.8	37
31	Dielectric response and electromagnetic wave absorption of novel macroporous short carbon fibers/mullite composites. Journal of the American Ceramic Society, 2020, 103, 6869-6880.	3.8	37
32	Preparation and study on microwave absorbing materials of boron nitride coated pyrolytic carbon particles. Applied Surface Science, 2012, 258, 8455-8459.	6.1	35
33	Scalable and controllable synthesis of multi-shell hollow carbon microspheres for high-performance supercapacitors. Carbon, 2019, 154, 330-341.	10.3	34
34	Damage analysis of 2.5D C/C-SiC composites subjected to fatigue loadings. Journal of the European Ceramic Society, 2019, 39, 2244-2250.	5.7	30
35	Urchin-shaped Nb2O5 microspheres synthesized by the facile hydrothermal method and their lithium storage performance. Materials Letters, 2016, 167, 106-108.	2.6	29
36	LiFePO4/carbon nanowires with 3D nano-network structure as potential high performance cathode for lithium ion batteries. Electrochimica Acta, 2016, 191, 23-28.	5.2	28

#	Article	IF	Citations
37	Rambutan-like Nb2O5@SHCs microspheres for improved microwave absorption performance. Composites Communications, 2021, 24, 100643.	6.3	27
38	Strength evolution of cyclic loaded LSI-based C/C-SiC composites. Ceramics International, 2016, 42, 14505-14510.	4.8	26
39	Hydrothermal Synthesis of Nanoflake-Assembled (Ni _{0.5} Co _{0.5}) _{0.85} Se Microspheres as the Cathode and Reduced Graphene Oxide/Porous Fe ₂ O ₃ Nanospheres Composite as the Anode for Novel Alkaline Aqueous Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 561-572.	6.7	26
40	Microstructure and properties of Cu-Ti alloy infiltrated chopped Cf reinforced ceramics composites. Ceramics International, 2017, 43, 16628-16637.	4.8	25
41	SiC nanofibers modified Si3N4 ceramics for improved electromagnetic interference shielding in X-band. Ceramics International, 2018, 44, 2249-2254.	4.8	25
42	Mechanical properties of CVD-SiC coatings with Si impurity. Ceramics International, 2018, 44, 21730-21733.	4.8	25
43	Mechanical and Microwaveâ€Absorption Properties of Si ₃ N ₄ Ceramic with SiCNFs Fillers. Advanced Engineering Materials, 2019, 21, 1800665.	3.5	25
44	Tensile fatigue behavior of plain-weave reinforced C f /C–SiC composites. Ceramics International, 2016, 42, 6850-6857.	4.8	24
45	Oxidation behavior of C/C composites with SiC/ZrSiO 4 –SiO 2 coating. Transactions of Nonferrous Metals Society of China, 2017, 27, 397-405.	4.2	24
46	Preparation and electrochemical performance of LiFePO4/C microspheres by a facile and novel co-precipitation. Electrochimica Acta, 2015, 167, 172-178.	5.2	22
47	LPCVD-based SiO 2 /SiC multi-layers coating on graphite for improved anti-oxidation at wide-ranged temperatures. Composites Part B: Engineering, 2018, 146, 155-164.	12.0	22
48	Nb 2 O 5 nanospheres/surface-modified graphene composites as superior anode materials in lithium ion batteries. Ceramics International, 2017, 43, 6232-6238.	4.8	20
49	Preparation and microwave absorbing properties of carbon fibers/epoxy composites with grid structure. Journal of Materials Science: Materials in Electronics, 2015, 26, 651-658.	2.2	19
50	The anti-oxidation behavior and infrared emissivity property of SiC/ZrSiO4–SiO2 coating. Journal of Materials Science: Materials in Electronics, 2014, 25, 5433-5440.	2.2	17
51	Graphene-Like Carbon Derived from Macadamia Nut Shells for High-Performance Supercapacitor. Russian Journal of Electrochemistry, 2019, 55, 242-246.	0.9	17
52	Electromagnetic wave absorbing performance of multiphase (SiC/HfC/C)/SiO2 nanocomposites with an unique microstructure. Journal of the European Ceramic Society, 2021, 41, 2425-2434.	5.7	17
53	Modeling for the electromagnetic properties and EMI shielding of Cf/mullite composites in the gigahertz range. Journal of the European Ceramic Society, 2020, 40, 3423-3430.	5.7	16
54	Boron nitride (BN) and BN based multiple-layer interphase for SiCf/SiC composites: A review. Ceramics International, 2022, 48, 34107-34127.	4.8	16

#	Article	IF	Citations
55	Bio-templated fabrication of chain-spherical V2O5/C composites from dandelion fiber for high-efficiency electromagnetic wave absorption. Vacuum, 2022, 195, 110683.	3.5	15
56	Microstructures and tribological properties of carbon/carbon-boron nitride composites fabricated by powdered additives and chemical vapor infiltration. Ceramics International, 2017, 43, 7607-7617.	4.8	14
57	Hot deformation behavior of Al–9.0Mg–0.5Mn–0.1Ti alloy based on processing maps. Transactions of Nonferrous Metals Society of China, 2017, 27, 289-297.	4.2	14
58	Enhanced electromagnetic shielding property of cf/mullite composites fabricated by spark plasma sintering. Ceramics International, 2019, 45, 18988-18993.	4.8	13
59	Improved microwave absorption properties of polycarbosilane-derived SiC core-shell particles by oxidation. Journal of Alloys and Compounds, 2019, 786, 409-417.	5.5	13
60	Mechanical response and microstructure of 2D carbon fiber reinforced CMCs containing Cu-Si alloy exposed to fatigue stresses. Composites Part B: Engineering, 2019, 160, 76-83.	12.0	13
61	Multiple dielectric behavior of Cf-SiCNFs/Si3N4 ceramic composite at high temperatures. Ceramics International, 2021, 47, 4127-4134.	4.8	13
62	Preparation and dielectric properties of Si3N4/SiCw composite ceramic. Journal of Materials Science: Materials in Electronics, 2014, 25, 4088-4094.	2.2	12
63	Frogegg-like Li 3 V 2 (PO 4) 3 /carbon composite with three dimensional porous structure and its improved electrochemical performance in lithium ion batteries. Materials Letters, 2017, 204, 104-107.	2.6	11
64	Biomass carbon materials derived from macadamia nut shells for high-performance supercapacitors. Bulletin of Materials Science, 2018, 41, 1.	1.7	11
65	Interaction of Yb2Si2O7 environmental barrier coating material with Calcium-Ferrum-Alumina-Silicate (CFAS) at high temperature. Ceramics International, 2021, 47, 31625-31637.	4.8	11
66	Selective preparation of graphene- and rope-like NanoCarbons from camellia wastes as high performance electrode materials for energy storage. Journal of Alloys and Compounds, 2019, 811, 151616.	5.5	10
67	Fiber orientation dependence of tribological behavior of short carbon fiber reinforced ceramic matrix composites. Journal of the American Ceramic Society, 2022, 105, 538-552.	3.8	10
68	Li 3 V 2 (PO 4) 3 /C composite with hollow coaxial structure for high-capacity and high-rate performance in lithium-ion batteries. Materials Letters, 2018, 216, 46-49.	2.6	9
69	Dielectric response and microwave absorption properties of SiC whisker-coated carbon fibers. Journal of Materials Science: Materials in Electronics, 2019, 30, 15075-15083.	2.2	9
70	Microwave Absorbing Properties of Carbon Fibers Modified with BN/SiC Composite Coatings. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2014, 29, 1093.	1.3	9
71	Hierarchical porous LiFePO ₄ /Carbon composite electrodes for lithium-ion batteries. Materials Technology, 2017, 32, 203-209.	3.0	8
72	Porous carbons derived from tea-seed shells and their improved electrochemical performance in lithium-ion batteries and supercapacitors. Materials Technology, 2018, 33, 443-450.	3.0	8

#	Article	IF	CITATIONS
73	Investigation on Electromagnetic Wave Absorption of SiCw/Si ₃ N ₄ Composites Exposed to Short-Time Oxidation. Journal of Nanoscience and Nanotechnology, 2020, 20, 1859-1865.	0.9	7
74	Nitrogen/sulfur coâ€doping for biomass carbon foam as superior sulfur hosts for lithiumâ€sulfur batteries. International Journal of Energy Research, 2022, 46, 10606-10619.	4.5	7
75	Seed-induced synthesis of flower-like a Li3V2(PO4)3/carbon composite and its application in lithium-ion batteries. Journal of Alloys and Compounds, 2018, 766, 54-65.	5.5	6
76	Synthesis of Hollow Carbon Microspheres with Tunable Shell Numbers for High-Performance Anode Material in Lithium-Ion Batteries. Journal of Nanoscience and Nanotechnology, 2020, 20, 4899-4906.	0.9	6
77	Preparation of Nb2O5 with an air filter-like structure and its excellent electrochemical performance in supercapacitors. Journal of Alloys and Compounds, 2019, 802, 668-674.	5.5	5
78	Microstructure and corrosion behavior of in-situ grown Y3Si2C2 coated SiC fibers exposed to air and wet-oxygen at 1400Ââ,, f. Journal of the European Ceramic Society, 2022, 42, 3427-3436.	5 . 7	5
79	Microwave absorption properties of SiO2 doped furan resin derived carbon particles. Journal of Materials Science: Materials in Electronics, 2019, 30, 3359-3364.	2.2	4
80	Facile Synthesis of Tremella-Like V ₂ O ₅ Microspheres and Their Application as Cathode Materials in Lithium Ion Batteries. Journal of Nanoscience and Nanotechnology, 2019, 19, 194-198.	0.9	4
81	Facile synthesis of wool-spherical CNTs microspheres/Nb2O5 composites for efficient electromagnetic wave absorption. Synthetic Metals, 2022, 283, 116982.	3.9	4
82	Synthesis and Microwave Absorbing Properties of PyC/BN Composite Powders. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2013, 28, 479-484.	1.3	3
83	Improved mechanical properties and toughening mechanism of mullite ceramics reinforced by introducing Ti ₃ AlC ₂ particles. International Journal of Applied Ceramic Technology, 2022, 19, 1650-1658.	2.1	3
84	Study on Hypervelocity Impact Characteristics of Ti/Al/Mg Density-Graded Materials. Metals, 2020, 10, 697.	2.3	2
85	Multiâ€scale modeling for frequencyâ€dependent dielectric responses of nonâ€uniform porous carbon fiber/mullite composites. International Journal of Applied Ceramic Technology, 0, , .	2.1	2
86	Flower-like C@V $<$ sub $>$ 2 $<$ /sub $>$ 0 $<$ sub $>$ 5 $<$ /sub $>$ microspheres as highly electrochemically active cathode in aqueous zinc-ion batteries. Materials Express, 2020, 10, 1697-1703.	0.5	1
87	Mechanism of Microwave Dielectric Response in Laminated C\$ t;inf\$gt;f\$ t;/inf\$gt;-Si\$ t;inf\$gt;3\$ t;/inf\$gt;N\$ t;inf\$gt;4\$ t;/inf\$gt; Composites. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2017, 32, 86.	1.3	0
88	Facile Synthesis of Tremella-Like Li ₃ V ₂ (PO ₄) ₃ /C Composite Cathode Materials Based on Oroxylum for Use in Lithium-Ion Batteries. Journal of Nanoscience and Nanotechnology, 2020, 20, 1962-1967.	0.9	0