
Daniel J Kirshbaum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1795977/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exchange Processes in the Atmospheric Boundary Layer Over Mountainous Terrain. Atmosphere, 2018, 9, 102.	2.3	131
2	Moist Orographic Convection: Physical Mechanisms and Links to Surface-Exchange Processes. Atmosphere, 2018, 9, 80.	2.3	111
3	Factors Governing Cellular Convection in Orographic Precipitation. Journals of the Atmospheric Sciences, 2004, 61, 682-698.	1.7	94
4	Orographic Precipitation in the Tropics: The Dominica Experiment. Bulletin of the American Meteorological Society, 2012, 93, 1567-1579.	3.3	71
5	Cloud-Resolving Simulations of Deep Convection over a Heated Mountain. Journals of the Atmospheric Sciences, 2011, 68, 361-378.	1.7	67
6	Orographic Precipitation in the Tropics: Experiments in Dominica. Journals of the Atmospheric Sciences, 2009, 66, 1698-1716.	1.7	62
7	The Triggering of Orographic Rainbands by Small-Scale Topography. Journals of the Atmospheric Sciences, 2007, 64, 1530-1549.	1.7	60
8	Temperature and moistâ€stability effects on midlatitude orographic precipitation. Quarterly Journal of the Royal Meteorological Society, 2008, 134, 1183-1199.	2.7	59
9	An Intercomparison of T-REX Mountain-Wave Simulations and Implications for Mesoscale Predictability. Monthly Weather Review, 2011, 139, 2811-2831.	1.4	57
10	Orographic Precipitation in the Tropics: Large-Eddy Simulations and Theory. Journals of the Atmospheric Sciences, 2009, 66, 2559-2578.	1.7	54
11	Observations and Modeling of Banded Orographic Convection. Journals of the Atmospheric Sciences, 2005, 62, 1463-1479.	1.7	51
12	Initiation of deep convection at marginal instability in an ensemble of mesoscale models: a caseâ€ s tudy from COPS. Quarterly Journal of the Royal Meteorological Society, 2011, 137, 118-136.	2.7	49
13	Atmospheric Factors Governing Banded Orographic Convection. Journals of the Atmospheric Sciences, 2005, 62, 3758-3774.	1.7	45
14	Orographic Enhancement of Precipitation inside Hurricane Dean. Journal of Hydrometeorology, 2009, 10, 820-831.	1.9	42
15	Sensitivity of deep convection to terrain forcing over Mediterranean islands. Quarterly Journal of the Royal Meteorological Society, 2013, 139, 1762-1779.	2.7	42
16	Invigoration of cumulus cloud fields by mesoscale ascent. Quarterly Journal of the Royal Meteorological Society, 2012, 138, 2136-2150.	2.7	41
17	Sensitivities of a Squall Line over Central Europe in a Convective-Scale Ensemble. Monthly Weather Review, 2013, 141, 112-133.	1.4	41
18	The Evolution of Convective Storms Initiated by an Isolated Mountain Ridge. Monthly Weather Review, 2014, 142, 1430-1451.	1.4	41

DANIEL J KIRSHBAUM

#	Article	IF	CITATIONS
19	Exploring the Land–Ocean Contrast in Convective Vigor Using Islands. Journals of the Atmospheric Sciences, 2011, 68, 602-618.	1.7	39
20	Ensemble predictability of an isolated mountain thunderstorm in a highâ€resolution model. Quarterly Journal of the Royal Meteorological Society, 2011, 137, 2124-2137.	2.7	37
21	A â€~Boscastleâ€ŧype' quasiâ€stationary convective system over the UK Southwest Peninsula. Quarterly Journal of the Royal Meteorological Society, 2014, 140, 240-257.	2.7	36
22	A radarâ€based rainfall climatology of Great Britain and Ireland. Weather, 2015, 70, 153-158.	0.7	36
23	On Thermally Forced Circulations over Heated Terrain. Journals of the Atmospheric Sciences, 2013, 70, 1690-1709.	1.7	35
24	Synoptic versus orographic control on stationary convective banding. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 1101-1113.	2.7	34
25	Thermally Forced Convection over a Mountainous Tropical Island. Journals of the Atmospheric Sciences, 2015, 72, 2484-2506.	1.7	28
26	Initiation of Deep Convection over an Idealized Mesoscale Convergence Line. Journals of the Atmospheric Sciences, 2017, 74, 835-853.	1.7	27
27	Under what conditions does embedded convection enhance orographic precipitation?. Quarterly Journal of the Royal Meteorological Society, 2012, 138, 391-406.	2.7	25
28	Synoptic Control over Orographic Precipitation Distributions during the Olympics Mountains Experiment (OLYMPEX). Monthly Weather Review, 2018, 146, 1023-1044.	1.4	23
29	Boundary Layer Updrafts Driven by Airflow over Heated Terrain. Journals of the Atmospheric Sciences, 2014, 71, 1425-1442.	1.7	22
30	The Spacing of Orographic Rainbands Triggered by Small-Scale Topography. Journals of the Atmospheric Sciences, 2007, 64, 4222-4245.	1.7	20
31	Climatology of Size, Shape, and Intensity of Precipitation Features over Great Britain and Ireland. Journal of Hydrometeorology, 2017, 18, 1595-1615.	1.9	20
32	Cloud Trails Past the Lesser Antilles. Monthly Weather Review, 2015, 143, 995-1017.	1.4	16
33	Sensitivity of Idealized Moist Baroclinic Waves to Environmental Temperature and Moisture Content. Journals of the Atmospheric Sciences, 2018, 75, 337-360.	1.7	16
34	Climatology of Banded Precipitation over the Contiguous United States. Monthly Weather Review, 2016, 144, 4553-4568.	1.4	13
35	On upstream blocking over heated mountain ridges. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 53-68.	2.7	11
36	The Mississippi Valley Convection Minimum on Summer Afternoons: Observations and Numerical Simulations. Monthly Weather Review, 2016, 144, 263-272.	1.4	10

DANIEL J KIRSHBAUM

#	Article	IF	CITATIONS
37	Evaluation of Shallowâ€Cumulus Entrainment Rate Retrievals Using Largeâ€Eddy Simulation. Journal of Geophysical Research D: Atmospheres, 2019, 124, 9624-9643.	3.3	10
38	Topographic Impacts on the Spatial Distribution of Deep Convection over Southern Quebec. Journal of Applied Meteorology and Climatology, 2016, 55, 743-762.	1.5	9
39	Verification of 24-h Quantitative Precipitation Forecasts over the Pacific Northwest from a High-Resolution Ensemble Kalman Filter System. Weather and Forecasting, 2017, 32, 1185-1208.	1.4	9
40	Numerical Simulations of Orographic Convection across Multiple Gray Zones. Journals of the Atmospheric Sciences, 2020, 77, 3301-3320.	1.7	9
41	On the sensitivity of deepâ€convection initiation to horizontal grid resolution. Quarterly Journal of the Royal Meteorological Society, 2020, 146, 1085-1105.	2.7	8
42	Environmental sensitivities of shallow-cumulus dilution – Part 1: Selected thermodynamic conditions. Atmospheric Chemistry and Physics, 2020, 20, 13217-13239.	4.9	8
43	A mixed-phase bulk orographic precipitation model with embedded convection. Quarterly Journal of the Royal Meteorological Society, 2014, 140, 1997-2012.	2.7	7
44	Assessment of Conditional Symmetric Instability from Global Reanalysis Data. Journals of the Atmospheric Sciences, 2018, 75, 2425-2443.	1.7	7
45	Convection Initiation Aided by Lake-Breeze Convergence over the Niagara Peninsula. Monthly Weather Review, 2019, 147, 3955-3979.	1.4	7
46	A Lagrangian Perspective on Parameterizing Deep Convection. Monthly Weather Review, 2019, 147, 4127-4149.	1.4	7
47	Editorial: The Atmosphere over Mountainous Regions. Frontiers in Earth Science, 2016, 4, .	1.8	6
48	The Utility of Convection-Permitting Ensembles for the Prediction of Stationary Convective Bands. Monthly Weather Review, 2016, 144, 1093-1114.	1.4	6
49	Linear theory of shallow convection in deep, vertically sheared atmospheres. Quarterly Journal of the Royal Meteorological Society, 2019, 145, 3129-3147.	2.7	6
50	Towards the closure of momentum budget analyses in the WRF (v3.8.1) model. Geoscientific Model Development, 2020, 13, 1737-1761.	3.6	5
51	Idealized simulations of sea breezes over mountainous islands. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 1657-1669.	2.7	4
52	Environmental sensitivities of shallow-cumulus dilution – Part 2: Vertical wind profile. Atmospheric Chemistry and Physics, 2021, 21, 14039-14058.	4.9	4
53	Asperitas - a newly identified cloud supplementary feature. Weather, 2017, 72, 132-141.	0.7	3
54	Convective Cloud Bands Downwind of Mesoscale Mountain Ridges. Journals of the Atmospheric Sciences, 2018, 75, 4265-4286.	1.7	2

DANIEL J KIRSHBAUM

#	Article	IF	CITATIONS
55	Sensitivities of slantwise convection dynamics to model grid spacing under an idealized framework. Quarterly Journal of the Royal Meteorological Society, 2021, 147, 1930-1948.	2.7	2
56	Multiple bands near fronts in <scp>VHF</scp> windâ€profiling radar and radiosonde data. Atmospheric Science Letters, 2013, 14, 146-152.	1.9	0
57	Large-eddy simulations of convection initiation over heterogeneous, low terrain. Journals of the Atmospheric Sciences, 2022, , .	1.7	Ο
58	Ensemble sensitivity of precipitation type to initial conditions for a major freezing rain event in Montreal. Monthly Weather Review, 2022, , .	1.4	0