Nikolaos Patsoukis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1795103/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Treatment with Exogenously Added Catalase Alters CD8 T Cell Memory Differentiation and Function. Advanced Biology, 2023, 7, e2101320.	1.4	3
2	Effects of PD-1 Signaling on Immunometabolic Reprogramming. Immunometabolism, 2022, 4, .	0.7	10
3	The PDâ€l Interactome. Advanced Biology, 2021, 5, e2100758.	1.4	21
4	The PDâ€l Interactome (Adv. Biology 9/2021). Advanced Biology, 2021, 5, 2170093.	1.4	0
5	Structural, biochemical, and functional properties of the Rap1-Interacting Adaptor Molecule (RIAM). Biomedical Journal, 2021, , .	1.4	3
6	Pparα Ablation Suppresses T Cell Responses and Anti-Tumor Immunity By Compromising the Antigen-Presenting Properties of Tumor-Associated Macrophages. Blood, 2021, 138, 438-438.	0.6	1
7	Targeted deletion of PD-1 in myeloid cells induces antitumor immunity. Science Immunology, 2020, 5, .	5.6	287
8	Revisiting the PD-1 pathway. Science Advances, 2020, 6, .	4.7	277
9	Interaction of SHP-2 SH2 domains with PD-1 ITSM induces PD-1 dimerization and SHP-2 activation. Communications Biology, 2020, 3, 128.	2.0	91
10	T Cell Metabolism in Cancer Immunotherapy. Immunometabolism, 2020, 2, .	0.7	16
11	Myeloid-Specific SHP-2 Ablation Induces Robust Anti-Tumor Immunity That Is Not Further Enhanced By PD-1 Blockade. Blood, 2020, 136, 25-26.	0.6	0
12	Phosphorylation of PD-1-Y248 is a marker of PD-1-mediated inhibitory function in human T cells. Scientific Reports, 2019, 9, 17252.	1.6	20
13	A secreted PD-L1 splice variant that covalently dimerizes and mediates immunosuppression. Cancer Immunology, Immunotherapy, 2019, 68, 421-432.	2.0	93
14	Unraveling Key Players of Humoral Immunity: Advanced and Optimized Lymphocyte Isolation Protocol from Murine Peyer's Patches. Journal of Visualized Experiments, 2018, , .	0.2	2
15	Targeting T Cell Metabolism for Improvement of Cancer Immunotherapy. Frontiers in Oncology, 2018, 8, 237.	1.3	123
16	Metabolic Reprogramming of Myeloid Cells in Response to Factors of "Emergency" Myelopoiesis By Myeloid-Specific PD-1 Ablation, Regulates Myeloid Lineage Fate Commitment and Anti-Tumor Immunity. Blood, 2018, 132, 14-14.	0.6	2
17	The Rap1-RIAM Pathway Regulates the Expression of Integrins αEβ7(CD103) and α4β7, Which Guide T Cell Homing to Intestinal Compartments. Blood, 2018, 132, 864-864.	0.6	1
18	The Two SH2 Domains of SHP-2 Bridge Two PD-1 Molecules Resulting in SHP-2 Activation and PD-1-Mediated Inhibition, Blood, 2018, 132, 862-862.	0.6	0

NIKOLAOS PATSOUKIS

#	Article	IF	CITATIONS
19	The adaptor molecule RIAM integrates signaling events critical for integrin-mediated control of immune function and cancer progression. Science Signaling, 2017, 10, .	1.6	39
20	Feeling stressed? It might be your T cells. Nature Immunology, 2017, 18, 1281-1283.	7.0	2
21	Immunometabolic Regulations Mediated by Coinhibitory Receptors and Their Impact on T Cell Immune Responses. Frontiers in Immunology, 2017, 8, 330.	2.2	44
22	Clinical significance of T cell metabolic reprogramming in cancer. Clinical and Translational Medicine, 2016, 5, 29.	1.7	69
23	Interaction of Both SH2 Domains of SHP-2 with a PD-1 Homodimer Is Required for PD-1-Mediated Inhibition of T Cell Responses. Blood, 2016, 128, 859-859.	0.6	1
24	RIAM (Rap1-Interactive Adaptor Molecule). , 2016, , 1-10.		0
25	Prostaglandin E2 Alters the Differentiation and Function of Antigen-Specific T Cells By Targeting the Metabolic Gene Regulatory Network Downstream of mTORC1. Blood, 2016, 128, 552-552.	0.6	Ο
26	The role of metabolic reprogramming in T cell fate and function. Current Trends in Immunology, 2016, 17, 1-12.	4.0	29
27	PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nature Communications, 2015, 6, 6692.	5.8	834
28	PD-1 Inhibits TCR Proximal Signaling By Sequestering SHP-2 Phosphatase and Facilitating Csk-Mediated Inhibitory Phosphorylation of Lck. Blood, 2015, 126, 283-283.	0.6	3
29	Rap1-GTP Augments TGF-b-Mediated Signaling in T Lymphocytes Via a Mechanism Dependent on the b Chain of LFA-1 Integrin. Blood, 2015, 126, 3422-3422.	0.6	0
30	Inhibition of Cdk2 Inactivates EZH2 and Induces Epigenetic Regulation of Fopx3 Leading to the Generation of CD8+ Treg and Protection from GvHD. Biology of Blood and Marrow Transplantation, 2014, 20, S53.	2.0	2
31	The cyclin dependent kinase inhibitor (R)-roscovitine mediates selective suppression of alloreactive human T cells but preserves pathogen-specific and leukemia-specific effectors. Clinical Immunology, 2014, 152, 48-57.	1.4	13
32	Phosphorylation of Tyrosine 340 in the Plekstrin Homology Domain of RIAM Is Required for Translocation of RIAM to the Plasma Membrane, Phosphorylation of RIAM-Associated PLC-g1 and LFA-1 Activation. Blood, 2014, 124, 2743-2743.	0.6	5
33	RIAM Interacts with the Hematopoietic-Specific Adaptor Protein Gads and Forms a LAT-Independent Node of Signal Integration That Regulates Activation of PLC-γ1. Blood, 2014, 124, 4138-4138.	0.6	0
34	PD-1 Increases PTEN Phosphatase Activity While Decreasing PTEN Protein Stability by Inhibiting Casein Kinase 2. Molecular and Cellular Biology, 2013, 33, 3091-3098.	1.1	152
35	Distinct Roles Of PD-1 Itsm and ITIM In Regulating Interactions With SHP-2, ZAP-70 and Lck, and PD-1-Mediated Inhibitory Function. Blood, 2013, 122, 191-191.	0.6	10
36	Inhibition Of Cdk2 Promotes The Generation Of Inducible CD8+ T Regulatory Cells By Modulating The Epigenetic Regulator EZH2. Blood, 2013, 122, 138-138.	0.6	0

NIKOLAOS PATSOUKIS

#	Article	IF	CITATIONS
37	PD-1 inhibits T cell proliferation by upregulating p27 and p15 and suppressing Cdc25A. Cell Cycle, 2012, 11, 4305-4309.	1.3	103
38	Rap1-interacting adapter molecule (RIAM) associates with the plasma membrane via a proximity detector. Journal of Cell Biology, 2012, 199, 317-329.	2.3	54
39	Selective Effects of PD-1 on Akt and Ras Pathways Regulate Molecular Components of the Cell Cycle and Inhibit T Cell Proliferation. Science Signaling, 2012, 5, ra46.	1.6	411
40	Runx1 and Runx3 Are Involved in the Generation and Function of Highly Suppressive IL-17-Producing T Regulatory Cells. PLoS ONE, 2012, 7, e45115.	1.1	37
41	PD-1 Decreases PTEN Protein Stability While Increasing PTEN Phosphatase Activity by Inhibiting CK2 Blood, 2012, 120, 2145-2145.	0.6	Ο
42	Phosphorylation of Tyrosine 340 in the Pleckstrin Homology Domain of RIAM Is Required for Inside-Out Activation of LFA-1 and LFA-1: ICAM-1-Mediated Adhesion. Blood, 2012, 120, 837-837.	0.6	0
43	PD-1 Couples Glucose Starvation with Autophagy and Survival Through AMPK-Mediated Phosphorylation of Ulk1. Blood, 2012, 120, 836-836.	0.6	1
44	RIAM and RapL, Two Structurally Divergent Rap1 Effectors, Have Distinct Signaling and Functional Roles in TCR-Mediated Activation. Blood, 2011, 118, 1118-1118.	0.6	0
45	Rap1-GTP Augments Activation of Smad and p38 Mediated Signaling Downstream of TGF-Î ² Receptor In T Lymphocytes. Blood, 2010, 116, 956-956.	0.6	Ο
46	PD-1 Signals Inhibit Cell Cycle Progression by Mediating Upregulation of Both KIP and INK Family of Cdk Inhibitors. Blood, 2010, 116, 585-585.	0.6	0
47	RIAM Regulates the Cytoskeletal Distribution and Activation of PLC-γ1 in T Cells. Science Signaling, 2009, 2, ra79.	1.6	29
48	RIAM and RapL Regulate Distinct Signaling Events and Functional Outcomes Upon TCR-Mediated Activation Blood, 2009, 114, 3683-3683.	0.6	0
49	Thiol redox state and related enzymes in sclerotium-forming filamentous phytopathogenic fungi. Mycological Research, 2008, 112, 602-610.	2.5	14
50	Differentiation of Sclerotinia minor depends on thiol redox state and oxidative stress. Canadian Journal of Microbiology, 2008, 54, 28-36.	0.8	11
51	The Role of Thiols on Sclerotial Differentiation of Filamentous Phytopathogenic Fungi. The Open Mycology Journal, 2008, 2, 1-8.	0.8	2
52	RIAM Regulate Spatio-Temporal Distribution of PLC- \hat{I}^31 and Calcium Mobilization during T Cell Activation. Blood, 2008, 112, 673-673.	0.6	0
53	Effect of sulfite–hydrosulfite and nitrite on thiol redox state, oxidative stress and sclerotial differentiation of filamentous phytopathogenic fungi. Pesticide Biochemistry and Physiology, 2007, 88, 226-235.	1.6	16
54	Effect of thiol redox state modulators on oxidative stress and sclerotial differentiation of the phytopathogenic fungus Rhizoctonia solani. Archives of Microbiology, 2007, 188, 225-233.	1.0	18

NIKOLAOS PATSOUKIS

#	Article	IF	CITATIONS
55	Effect of Antioxidant Treatments on the Gut–Liver Axis Oxidative Status and Function in Bile Ductâ€Ligated Rats. World Journal of Surgery, 2007, 31, 2023-2032.	0.8	17
56	Effect of glutathione biosynthesis-related modulators on the thiol redox state enzymes and on sclerotial differentiation of filamentous phytopathogenic fungi. Mycopathologia, 2007, 163, 335-347.	1.3	22
57	Sclerotial metamorphosis in filamentous fungi is induced by oxidative stress. Integrative and Comparative Biology, 2006, 46, 691-712.	0.9	177
58	Translational Fidelity Mutations in 18S rRNA Affect the Catalytic Activity of Ribosomes and the Oxidative Balance of Yeast Cells. Biochemistry, 2006, 45, 3525-3533.	1.2	14
59	Brain Oxidative Stress Induced by Obstructive Jaundice in Rats. Journal of Neuropathology and Experimental Neurology, 2006, 65, 193-198.	0.9	30
60	Effect of N-acetylcysteine, allopurinol and vitamin E on jaundice-induced brain oxidative stress in rats. Brain Research, 2006, 1111, 203-212.	1.1	38
61	Assay for the quantification of small-sized fragmented genomic DNA. Analytical Biochemistry, 2005, 339, 223-230.	1.1	17
62	An ultrasensitive fluorescent assay for the in vivo quantification of superoxide radical in organisms. Analytical Biochemistry, 2005, 347, 144-151.	1.1	66
63	Thiol Redox State and Lipid and Protein Oxidation in the Mouse Striatum after Pentylenetetrazol-induced Epileptic Seizure. Epilepsia, 2005, 46, 1205-1211.	2.6	36
64	Interference of non-specific peroxidases in the fluorescence detection of superoxide radical by hydroethidine oxidation: a new assay for H2O2. Analytical and Bioanalytical Chemistry, 2005, 381, 1065-1072.	1.9	47
65	Fluorometric determination of thiol redox state. Analytical and Bioanalytical Chemistry, 2005, 383, 923-929.	1.9	33
66	Thiol redox state and oxidative stress in midbrain and striatum of weaver mutant mice, a genetic model of nigrostriatal dopamine deficiency. Neuroscience Letters, 2005, 376, 24-28.	1.0	19
67	The fluorescence detection of superoxide radical using hydroethidine could be complicated by the presence of heme proteins. Analytical Biochemistry, 2004, 332, 290-298.	1.1	52
68	Oxidative state in intestine and liver after partial hepatectomy in rats. Effect of bombesin and neurotensin. Clinical Biochemistry, 2004, 37, 350-356.	0.8	33
69	Determination of the thiol redox state of organisms: new oxidative stress indicators. Analytical and Bioanalytical Chemistry, 2004, 378, 1783-1792.	1.9	72
70	Effect of pentylenetetrazol-induced epileptic seizure on thiol redox state in the mouse cerebral cortex. Epilepsy Research, 2004, 62, 65-74.	0.8	50
71	Thiol redox state (TRS) and oxidative stress in the mouse hippocampus after pentylenetetrazol-induced epileptic seizure. Neuroscience Letters, 2004, 357, 83-86.	1.0	172