Zhiao Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1794912/publications.pdf

Version: 2024-02-01

201674 395702 4,383 34 27 33 citations h-index g-index papers 34 34 34 3045 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nature Energy, 2020, 5, 526-533.	39.5	642
2	Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nature Energy, 2022, 7, 94-106.	39.5	336
3	Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors. Nature Communications, 2019, 10, 5384.	12.8	249
4	A New Class of Ionically Conducting Fluorinated Ether Electrolytes with High Electrochemical Stability. Journal of the American Chemical Society, 2020, 142, 7393-7403.	13.7	225
5	Fine-Tuning of Crystal Packing and Charge Transport Properties of BDOPV Derivatives through Fluorine Substitution. Journal of the American Chemical Society, 2015, 137, 15947-15956.	13.7	224
6	Steric Effect Tuned Ion Solvation Enabling Stable Cycling of High-Voltage Lithium Metal Battery. Journal of the American Chemical Society, 2021, 143, 18703-18713.	13.7	205
7	Liquid electrolyte: The nexus of practical lithium metal batteries. Joule, 2022, 6, 588-616.	24.0	191
8	Capturing the swelling of solid-electrolyte interphase in lithium metal batteries. Science, 2022, 375, 66-70.	12.6	183
9	A Dynamic, Electrolyte-Blocking, and Single-Ion-Conductive Network for Stable Lithium-Metal Anodes. Joule, 2019, 3, 2761-2776.	24.0	176
10	High-brightness all-polymer stretchable LED with charge-trapping dilution. Nature, 2022, 603, 624-630.	27.8	170
11	Monolithic optical microlithography of high-density elastic circuits. Science, 2021, 373, 88-94.	12.6	168
12	Polymers in Lithiumâ€ion and Lithium Metal Batteries. Advanced Energy Materials, 2021, 11, 2003239.	19.5	160
13	Suspension electrolyte with modified Li+ solvation environment for lithium metal batteries. Nature Materials, 2022, 21, 445-454.	27.5	155
14	Design Principles of Artificial Solid Electrolyte Interphases for Lithium-Metal Anodes. Cell Reports Physical Science, 2020, 1, 100119.	5.6	133
15	Scalable, Ultrathin, and Highâ€Temperatureâ€Resistant Solid Polymer Electrolytes for Energyâ€Dense Lithium Metal Batteries. Advanced Energy Materials, 2022, 12, .	19.5	132
16	Corrosion of lithium metal anodes during calendar ageing and its microscopic origins. Nature Energy, 2021, 6, 487-494.	39.5	124
17	Dualâ€Solvent Liâ€Ion Solvation Enables Highâ€Performance Liâ€Metal Batteries. Advanced Materials, 2021, 33, e2008619.	21.0	123
18	Dynamic spatial progression of isolated lithium during battery operations. Nature, 2021, 600, 659-663.	27.8	111

#	Article	IF	Citations
19	A Cofacially Stacked Electronâ€Deficient Small Molecule with a High Electron Mobility of over 10 cm ² V ^{â^1} s ^{â^1} in Air. Advanced Materials, 2015, 27, 8051-8055.	21.0	97
20	Tuning the Mechanical Properties of a Polymer Semiconductor by Modulating Hydrogen Bonding Interactions. Chemistry of Materials, 2020, 32, 5700-5714.	6.7	87
21	Potentiometric Measurement to Probe Solvation Energy and Its Correlation to Lithium Battery Cyclability. Journal of the American Chemical Society, 2021, 143, 10301-10308.	13.7	83
22	A molecular design approach towards elastic and multifunctional polymer electronics. Nature Communications, 2021, 12, 5701.	12.8	75
23	Organic Semiconducting Alloys with Tunable Energy Levels. Journal of the American Chemical Society, 2019, 141, 6561-6568.	13.7	65
24	Efficient Lithium Metal Cycling over a Wide Range of Pressures from an Anion-Derived Solid-Electrolyte Interphase Framework. ACS Energy Letters, 2021, 6, 816-825.	17.4	46
25	High Energy Density Shape Memory Polymers Using Strain-Induced Supramolecular Nanostructures. ACS Central Science, 2021, 7, 1657-1667.	11.3	43
26	Reprocessable and Recyclable Polymer Network Electrolytes via Incorporation of Dynamic Covalent Bonds. Chemistry of Materials, 2022, 34, 2393-2399.	6.7	43
27	Multivalent Assembly of Flexible Polymer Chains into Supramolecular Nanofibers. Journal of the American Chemical Society, 2020, 142, 16814-16824.	13.7	33
28	Tuning Fluorination of Linear Carbonate for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2022, 169, 040555.	2.9	24
29	Influence of solution-state aggregation on conjugated polymer crystallization in thin films and microwire crystals. Giant, 2021, 7, 100064.	5.1	23
30	Electrical resistance of the current collector controls lithium morphology. Nature Communications, 2022, 13, .	12.8	20
31	A Stretchable and Highly Conductive Sulfonic Pendent Single-Ion Polymer Electrolyte Derived from Multifunctional Tri-Block Polyether. ACS Applied Polymer Materials, 2021, 3, 3254-3263.	4.4	11
32	A flexible and highly conductive quasi-solid single-ion polymer electrolyte for high performance Li-metal batteries. Journal of Power Sources, 2022, 537, 231478.	7.8	11
33	A Solutionâ€Processable Highâ€Modulus Crystalline Artificial Solid Electrolyte Interphase for Practical Lithium Metal Batteries. Advanced Energy Materials, 2022, 12, .	19.5	10
34	A Flexible Single-Ion Gel Electrolyte with a Multiscale Channel for the High-Performance Lithium Metal Batteries., 2022, 4, 944-952.		5