Jian Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1794361/publications.pdf Version: 2024-02-01

ΙΙΔΝΙ ΧΙΔΟ

#	Article	IF	CITATIONS
1	Gold αâ€Oxo Carbenoids in Catalysis: Catalytic Oxygenâ€Atom Transfer to Alkynes. Angewandte Chemie - International Edition, 2011, 50, 7226-7236.	13.8	356
2	Catalytic Asymmetric (4+3) Cyclizations of In Situ Generated <i>ortho</i> â€Quinone Methides with 2â€Indolylmethanols. Angewandte Chemie - International Edition, 2019, 58, 8703-8708.	13.8	174
3	Advancement in Cascade [1,n]â€Hydrogen Transfer/Cyclization: A Method for Direct Functionalization of Inactive C(<i>sp</i> ³)H Bonds. Advanced Synthesis and Catalysis, 2014, 356, 1137-1171.	4.3	171
4	Alkylideneindoleninium Ions and Alkylideneindolenines: Key Intermediates for the Asymmetric Synthesis of 3â€Indolyl Derivatives. Asian Journal of Organic Chemistry, 2014, 3, 1036-1052.	2.7	109
5	Merging Organocatalysis with Transition Metal Catalysis: Highly Stereoselective α-Alkylation of Aldehydes. Organic Letters, 2012, 14, 1716-1719.	4.6	108
6	Catalyst-free dehydrative S _N 1-type reaction of indolyl alcohols with diverse nucleophiles "on water― Green Chemistry, 2016, 18, 1032-1037.	9.0	103
7	Redox-triggered cascade dearomative cyclizations enabled by hexafluoroisopropanol. Chemical Science, 2018, 9, 8253-8259.	7.4	101
8	Organocatalytic C(sp ³)–H Functionalization via Carbocation-Initiated Cascade [1,5]-Hydride Transfer/Cyclization: Synthesis of Dihydrodibenzo[<i>b</i> , <i>e</i>]azepines. Organic Letters, 2018, 20, 138-141.	4.6	96
9	Fluorinated Alcohols: Magic Reaction Medium and Promoters for Organic Synthesis. Chemical Record, 2020, 20, 142-161.	5.8	96
10	Organocatalytic atroposelective construction of axially chiral arylquinones. Nature Communications, 2019, 10, 4268.	12.8	92
11	Phosphoric acid-catalyzed atroposelective construction of axially chiral arylpyrroles. Nature Communications, 2019, 10, 566.	12.8	89
12	Fluorinated Alcoholâ€Mediated S _N 1â€Type Reaction of Indolyl Alcohols with Diverse Nucleophiles. Advanced Synthesis and Catalysis, 2015, 357, 4023-4030.	4.3	77
13	Hydrogen-Atom Transfer Reactions. Topics in Current Chemistry, 2016, 374, 17.	5.8	75
14	Construction of the tetrahydroquinoline spiro skeleton via cascade [1,5]-hydride transfer-involved C(sp3)–H functionalization "on water― Green Chemistry, 2017, 19, 5653-5658.	9.0	67
15	Hydride Transfer Involved Redox-Neutral Cascade Cyclizations for Construction of Spirocyclic Bisoxindoles Featuring a [3,4]-Fused Oxindole Moiety. Organic Letters, 2019, 21, 1058-1062.	4.6	67
16	Recent advances in hydride transfer-involved C(sp ³)–H activation reactions. Organic Chemistry Frontiers, 2021, 8, 1364-1383.	4.5	66
17	Aromatization-Driven Cascade [1,5]-Hydride Transfer/Spirocyclization Promoted by Fluorinated Alcohols. Journal of Organic Chemistry, 2019, 84, 1833-1844.	3.2	59
18	Hydride transfer initiated ring expansion of pyrrolidines toward highly functionalized tetrahydro-1-benzazepines. Chemical Communications, 2018, 54, 13833-13836.	4.1	57

Jian Xiao

#	Article	IF	CITATIONS
19	Redox-Neutral β-C(sp ³)–H Functionalization of Cyclic Amines via Intermolecular Hydride Transfer. Organic Letters, 2019, 21, 8543-8547.	4.6	56
20	C(sp ³)–H bond functionalization by sequential hydride transfer/cyclization: electronic effect and steric effect controlled regioselectivity. Organic Chemistry Frontiers, 2016, 3, 635-638.	4.5	42
21	Hydride transfer enabled switchable dearomatization of indoles in the carbocyclic ring and the pyrrole ring. Organic Chemistry Frontiers, 2020, 7, 2511-2517.	4.5	40
22	Hydride Transfer Initiated Redox-Neutral Cascade Cyclizations of Aurones: Facile Access to [6,5] Spirocycles. Organic Letters, 2020, 22, 2537-2541.	4.6	40
23	S _N 1-Type Alkylation of <i>N</i> -Heteroaromatics with Alcohols. Organic Letters, 2017, 19, 5724-5727.	4.6	39
24	<i>N</i> -Alkylation-Initiated Redox-Neutral [5 + 2] Annulation of 3-Alkylindoles with <i>o</i> -Aminobenzaldehydes: Access to Indole-1,2-Fused 1,4-Benzodiazepines. Organic Letters, 2019, 21, 8904-8908.	4.6	38
25	Catalytic Asymmetric (4+3) Cyclizations of In Situ Generated <i>ortho</i> â€Quinone Methides with 2â€Indolylmethanols. Angewandte Chemie, 2019, 131, 8795-8800.	2.0	38
26	Fluorinated alcohol-mediated [4 + 3] cycloaddition reaction of indolyl alcohols with cyclopentadiene. Organic and Biomolecular Chemistry, 2016, 14, 11510-11517.	2.8	33
27	Cascade [1,5]-Hydride Transfer/Cyclization for Synthesis of [3,4]-Fused Oxindoles. Journal of Organic Chemistry, 2019, 84, 8440-8448.	3.2	33
28	Organocatalytic Cascade β-Functionalization/Aromatization of Pyrrolidines via Double Hydride Transfer. Organic Letters, 2020, 22, 776-780.	4.6	33
29	Diversified Construction of Chromeno[3,4â€ <i>c</i>]pyridinâ€5â€one and Benzo[<i>c</i>]chromenâ€6â€one Derivatives by Domino Reaction of 4â€Alkynylâ€2â€oxoâ€2 <i>H</i> â€chromeneâ€3â€carbaldehydes. Advanced Synthesis and Catalysis, 2014, 356, 1835-1845.	4.3	30
30	Facile synthesis of azaarene-2-substituted chromanone derivatives via tandem sp3 C–H functionalization/decarboxylation of azaarenes with 4-oxo-4H-chromene-3-carboxylic acid. RSC Advances, 2014, 4, 53188-53191.	3.6	30
31	Organocatalytic Dearomative [4 + 2] Cycloadditions of Biomass-Derived 2,5-Dimethylfuran with <i>ortho</i> -Quinone Methides: Access to Multisubstituted Chromanes. Organic Letters, 2018, 20, 6069-6073.	4.6	30
32	Hexafluoroisopropanol-Mediated Redox-Neutral α-C(sp ³)–H Functionalization of Cyclic Amines via Hydride Transfer. Journal of Organic Chemistry, 2020, 85, 1915-1926.	3.2	30
33	Oxidative Enamine Catalysis: Direct Catalytic Enantioselective βâ€Functionalization of Aldehydes. ChemCatChem, 2012, 4, 612-615.	3.7	26
34	Redox-Neutral Cascade Dearomatization of Indoles via Hydride Transfer: Divergent Synthesis of Tetrahydroquinoline-Fused Spiroindolenines. Journal of Organic Chemistry, 2019, 84, 13935-13947.	3.2	26
35	Synthesis of Tetrahydro[1,3,4]triazepines via Redox-Neutral α-C(sp ³)–H Amination of Cyclic Amines. Journal of Organic Chemistry, 2019, 84, 11839-11847.	3.2	24
36	Organocatalytic cascade aldimine condensation/[1,6]-hydride transfer/Mannich-type cyclization: sustainable access to indole-2,3-fused diazocanes. Green Chemistry, 2021, 23, 8181-8186.	9.0	24

JIAN ΧΙΑΟ

#	Article	IF	CITATIONS
37	Fluorinated Alcohol-Promoted Reaction of Chlorohydrocarbons with Diverse Nucleophiles for the Synthesis of Triarylmethanes and Tetraarylmethanes. Journal of Organic Chemistry, 2018, 83, 15277-15283.	3.2	23
38	Friedel–Crafts alkylation of heteroarenes and arenes with indolyl alcohols for construction of 3,3-disubstituted oxindoles. RSC Advances, 2015, 5, 101713-101717.	3.6	22
39	<i>t</i> -BuOK-Mediated Oxidative Dehydrogenative C(sp ³)-H Arylation of 2-Alkylazaarenes with Nitroarenes. Journal of Organic Chemistry, 2017, 82, 8703-8709.	3.2	22
40	Organocatalytic Enantioselective Dehydrogenative <i>α</i> â€Alkylation of Aldehydes with Benzylic Compounds. Chinese Journal of Chemistry, 2012, 30, 2721-2725.	4.9	21
41	Chiral phosphoric acid-catalyzed asymmetric C(sp ³)–H functionalization of biomass-derived 2,5-dimethylfuran <i>via</i> two sequential Cope-type rearrangements. Organic Chemistry Frontiers, 2019, 6, 1162-1167.	4.5	21
42	Formal [4 + 2] Annulation of Oxindole-Embedded <i>ortho</i> -Quinone Methides with 1,3-Dicarbonyls: Synthesis of Spiro[Chromen-4,3′-Oxindole] Scaffolds. Journal of Organic Chemistry, 2019, 84, 3990-3999.	3.2	21
43	Production of 3-hydroxypropionate using a novel malonyl-CoA-mediated biosynthetic pathway in genetically engineeredE. colistrain. Green Chemistry, 2019, 21, 6103-6115.	9.0	17
44	Dearomative [4+2] Cycloaddition of Oxindoleâ€Embedded <i>ortho</i> â€Quinone Methides with 2,5â€Dialkylfurans. Advanced Synthesis and Catalysis, 2019, 361, 1453-1458.	4.3	17
45	Access to Polycyclic Indole-3,4-Fused Nine-Membered Ring via Cascade 1,6-Hydride Transfer/Cyclization. Organic Letters, 2021, 23, 9100-9105.	4.6	17
46	Facile Synthesis of Azaarene-Substituted Hydroxycoumarins Possessing High Biological Activities via Three-Component C(sp ³)–H Functionalization. ACS Combinatorial Science, 2016, 18, 604-610.	3.8	14
47	BrÃ,nsted Acid-Catalyzed Minisci-Type Cross-Dehydrogenative Coupling of <i>N</i> -Heteroaromatics and Cyclic Ethers. Journal of Organic Chemistry, 2021, 86, 9299-9305.	3.2	12
48	Bifunctional thiourea catalyzed asymmetric Michael addition of anthrone to methyleneindolinones. RSC Advances, 2016, 6, 38558-38562.	3.6	11
49	Organocatalytic C(sp ³)–H Functionalization of 5-Methyl-2,3-dihydrofuran Derivatives with Trifluoropyruvates via a Sequential <i>exo</i> -Tautomerization/Carbonyl-Ene Process. Journal of Organic Chemistry, 2019, 84, 2779-2785.	3.2	10
50	Rhodium(III)-Catalyzed Oxidative Olefination of N-(Naphthalen-1-yl)amides. Synlett, 2012, 23, 1649-1652.	1.8	9
51	Regioselective Michael Addition of Anthrone to MethyleneÂindolinones. Synthesis, 2016, 48, 2112-2120.	2.3	6
52	Photoredox-Enabled Synthesis of β-Substituted Pyrroles from Pyrrolidines. Journal of Organic Chemistry, 2020, 85, 9558-9565.	3.2	6
53	Cascade dearomative [4 + 2] cycloaddition of indoles with <i>in situ</i> generated <i>ortho</i> -quinone methides: practical access to divergent indoline-fused polycycles. Green Chemistry, 2022, 24, 3772-3777.	9.0	4
54	Facile Synthesis of Spirocyclic Tetrahydroquinolines via C(sp3)–H Functionalization in a Cascade Redox Process. Synthesis, 0, , .	2.3	3