
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1794326/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Novel Class of Gibberellin 2-Oxidases Control Semidwarfism, Tillering, and Root Development in Rice. Plant Cell, 2008, 20, 2603-2618.	6.6	410
2	Source–Sink Communication: Regulated by Hormone, Nutrient, and Stress Cross-Signaling. Trends in Plant Science, 2015, 20, 844-857.	8.8	259
3	A Novel MYBS3-Dependent Pathway Confers Cold Tolerance in Rice Â. Plant Physiology, 2010, 153, 145-158.	4.8	254
4	Agrobacterium-mediated production of transgenic rice plants expressing a chimeric ?-amylase promoter/?-glucuronidase gene. Plant Molecular Biology, 1993, 22, 491-506.	3.9	230
5	Three Novel MYB Proteins with One DNA Binding Repeat Mediate Sugar and Hormone Regulation of α-Amylase Gene Expression. Plant Cell, 2002, 14, 1963-1980.	6.6	226
6	Coordinated Responses to Oxygen and Sugar Deficiency Allow Rice Seedlings to Tolerate Flooding. Science Signaling, 2009, 2, ra61.	3.6	215
7	The SnRK1A Protein Kinase Plays a Key Role in Sugar Signaling during Germination and Seedling Growth of Rice. Plant Cell, 2007, 19, 2484-2499.	6.6	207
8	A rice gene activation/knockout mutant resource for high throughput functional genomics. Plant Molecular Biology, 2007, 63, 351-364.	3.9	197
9	Cellular and Genetic Responses of Plants to Sugar Starvation. Plant Physiology, 1999, 121, 687-693.	4.8	183
10	Mutant Resources in Rice for Functional Genomics of the Grasses. Plant Physiology, 2009, 149, 165-170.	4.8	167
11	Title is missing!. Transgenic Research, 1998, 7, 213-222.	2.4	161
12	Sugar Response Sequence in the Promoter of a Rice α-Amylase Gene Serves as a Transcriptional Enhancer. Journal of Biological Chemistry, 1998, 273, 10120-10131.	3.4	160
13	Sugar Coordinately and Differentially Regulates Growth- and Stress-Related Gene Expression via a Complex Signal Transduction Network and Multiple Control Mechanisms. Plant Physiology, 2001, 125, 877-890.	4.8	153
14	Expression of alpha-amylases, carbohydrate metabolism, and autophagy in cultured rice cells is coordinately regulated by sugar nutrient. Plant Journal, 1994, 6, 625-636.	5.7	152
15	Cloning and Functional Characterization of a Constitutively Expressed Nitrate Transporter Gene, OsNRT1, from Rice. Plant Physiology, 2000, 122, 379-388.	4.8	151
16	Sugars act as signal molecules and osmotica to regulate the expression of ?-amylase genes and metabolic activities in germinating cereal grains. Plant Molecular Biology, 1996, 30, 1277-1289.	3.9	122
17	<scp>ALFIN</scp> â€ <scp>LIKE</scp> 6 is involved in root hair elongation during phosphate deficiency in Arabidopsis. New Phytologist, 2013, 198, 709-720.	7.3	109
18	Signal Peptide-Dependent Targeting of a Rice α-Amylase and Cargo Proteins to Plastids and Extracellular Compartments of Plant Cells. Plant Physiology, 2004, 135, 1367-1377.	4.8	104

#	Article	IF	CITATIONS
19	Interaction between Rice MYBGA and the Gibberellin Response Element Controls Tissue-Specific Sugar Sensitivity of α-Amylase Genes. Plant Cell, 2006, 18, 2326-2340.	6.6	98
20	Ectopic expression of specific <scp>GA</scp> 2 oxidase mutants promotes yield and stress tolerance in rice. Plant Biotechnology Journal, 2017, 15, 850-864.	8.3	97
21	High-level production of a thermoacidophilic β-glucosidase from Penicillium citrinum YS40-5 by solid-state fermentation with rice bran. Bioresource Technology, 2010, 101, 1310-1317.	9.6	90
22	SnRK1A-Interacting Negative Regulators Modulate the Nutrient Starvation Signaling Sensor SnRK1 in Source-Sink Communication in Cereal Seedlings under Abiotic Stress Â. Plant Cell, 2014, 26, 808-827.	6.6	86
23	Carbohydrate Starvation Stimulates Differential Expression of Rice α-Amylase Genes That Is Modulated through Complicated Transcriptional and Posttranscriptional Processes. Journal of Biological Chemistry, 1996, 271, 26998-27004.	3.4	84
24	Production of two Highly Active Bacterial Phytases with Broad pH Optima in Germinated Transgenic Rice Seeds. Transgenic Research, 2004, 13, 29-39.	2.4	84
25	Sugar starvation- and GA-inducible calcium-dependent protein kinase 1 feedback regulates GA biosynthesis and activates a 14-3-3 protein to confer drought tolerance in rice seedlings. Plant Molecular Biology, 2013, 81, 347-361.	3.9	83
26	Production of human serum albumin by sugar starvation induced promoter and rice cell culture. Transgenic Research, 2005, 14, 569-581.	2.4	75
27	Control of transcription and mRNA turnover as mechanisms of metabolic repression of alpha-amylase gene expression. Plant Journal, 1994, 5, 655-664.	5.7	70
28	A late embryogenesis abundant protein <scp>HVA</scp> 1 regulated by an inducible promoter enhances root growth and abiotic stress tolerance in rice without yield penalty. Plant Biotechnology Journal, 2015, 13, 105-116.	8.3	69
29	A novel endo-glucanase from the thermophilic bacterium Geobacillus sp. 70PC53 with high activity and stability over a broad range of temperatures. Extremophiles, 2009, 13, 425-435.	2.3	68
30	Sugar starvation-regulated MYBS2 and 14-3-3 protein interactions enhance plant growth, stress tolerance, and grain weight in rice. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21925-21935.	7.1	68
31	Convergent Starvation Signals and Hormone Crosstalk in Regulating Nutrient Mobilization upon Germination in Cereals. Plant Cell, 2012, 24, 2857-2873.	6.6	66
32	Construction of Chromosomally Located T7 Expression System for Production of Heterologous Secreted Proteins in Bacillus subtilis. Journal of Agricultural and Food Chemistry, 2010, 58, 5392-5399.	5.2	56
33	Serotonin accumulation in transgenic rice by over-expressing tryptophan decarboxlyase results in a dark brown phenotype and stunted growth. Plant Molecular Biology, 2012, 78, 525-543.	3.9	56
34	Rice α-Amylase Transcriptional Enhancers Direct Multiple Mode Regulation of Promoters in Transgenic Rice. Journal of Biological Chemistry, 2002, 277, 13641-13649.	3.4	55
35	Metabolic adaptation to sugar/ <scp><scp>O</scp>₂</scp> deficiency for anaerobic germination and seedling growth in rice. Plant, Cell and Environment, 2014, 37, 2234-2244.	5.7	54
36	Multiple Mode Regulation of a Cysteine Proteinase Gene Expression in Rice. Plant Physiology, 2000, 122, 57-66.	4.8	53

#	Article	IF	CITATIONS
37	A rice phenomics study—phenotype scoring and seed propagation of a T-DNA insertion-induced rice mutant population. Plant Molecular Biology, 2007, 65, 427-438.	3.9	52
38	Abscisic Acid- and Stress-Induced Highly Proline-Rich Glycoproteins Regulate Root Growth in Rice. Plant Physiology, 2013, 163, 118-134.	4.8	52
39	The 3′ untranslated region of a rice α-amylase gene mediates sugar-dependent abundance of mRNA. Plant Journal, 1998, 15, 685-695.	5.7	50
40	Transcriptomic adaptations in rice suspension cells under sucrose starvation. Plant Molecular Biology, 2007, 63, 441-463.	3.9	49
41	Dynamic synergistic effect on Trichoderma reesei cellulases by novel β-glucosidases from Taiwanese fungi. Bioresource Technology, 2011, 102, 6073-6081.	9.6	47
42	Expression of a bi-functional and thermostable amylopullulanase in transgenic rice seeds leads to autohydrolysis and altered composition of starch. Molecular Breeding, 2005, 15, 125-143.	2.1	46
43	The sweet potato sporamin promoter confers high-level phytase expression and improves organic phosphorus acquisition and tuber yield of transgenic potato. Plant Molecular Biology, 2008, 67, 347-361.	3.9	42
44	A metagenomic approach for the identification and cloning of an endoglucanase from rice straw compost. Gene, 2013, 519, 360-366.	2.2	42
45	Genetic resources offer efficient tools for rice functional genomics research. Plant, Cell and Environment, 2016, 39, 998-1013.	5.7	42
46	Increasing Leaf Vein Density by Mutagenesis: Laying the Foundations for C4 Rice. PLoS ONE, 2014, 9, e94947.	2.5	36
47	Enhancement of laccase activity by pre-incubation with organic solvents. Scientific Reports, 2019, 9, 9754.	3.3	35
48	Somaclonal variation does not preclude the use of rice transformants for genetic screening. Plant Journal, 2016, 85, 648-659.	5.7	34
49	Exploring the Mechanism Responsible for Cellulase Thermostability by Structure-Guided Recombination. PLoS ONE, 2016, 11, e0147485.	2.5	32
50	Production of mouse granulocyteâ€macrophage colonyâ€stimulating factor by gateway technology and transgenic rice cell culture. Biotechnology and Bioengineering, 2012, 109, 1239-1247.	3.3	29
51	A novel exo-cellulase from white spotted longhorn beetle (Anoplophora malasiaca). Insect Biochemistry and Molecular Biology, 2012, 42, 629-636.	2.7	26
52	<i>Rice Big Grain 1 </i> promotes cell division to enhance organ development, stress tolerance and grain yield. Plant Biotechnology Journal, 2020, 18, 1969-1983.	8.3	25
53	How does rice cope with too little oxygen during its early life?. New Phytologist, 2021, 229, 36-41.	7.3	25
54	T-DNA Activation Tagging as a Tool to Isolate <i>Salvia miltiorrhiza</i> Transgenic Lines for Higher Yields of Tanshinones. Planta Medica, 2008, 74, 780-786.	1.3	24

#	Article	IF	CITATIONS
55	Characterization of an immunomodulatory Der p 2-FIP-fve fusion protein produced in transformed rice suspension cell culture. Transgenic Research, 2012, 21, 177-192.	2.4	21
56	Kinetic analysis and structural studies of a highâ€efficiency laccase from <i>Cerrena</i> sp. <scp>RSD</scp> 1. FEBS Open Bio, 2018, 8, 1230-1246.	2.3	20
57	Chaetomella raphigera β-glucosidase D2-BGL has intriguing structural features and a high substrate affinity that renders it an efficient cellulase supplement for lignocellulosic biomass hydrolysis. Biotechnology for Biofuels, 2019, 12, 258.	6.2	19
58	Candidate regulators of Early Leaf Development in Maize Perturb Hormone Signalling and Secondary Cell Wall Formation When Constitutively Expressed in Rice. Scientific Reports, 2017, 7, 4535.	3.3	18
59	Improvements of the productivity and saccharification efficiency of the cellulolytic β-glucosidase D2-BGL in Pichia pastoris via directed evolution. Biotechnology for Biofuels, 2021, 14, 126.	6.2	16
60	Large-scale phenomics analysis of a T-DNA tagged mutant population. GigaScience, 2017, 6, 1-7.	6.4	15
61	Global functional analyses of rice promoters by genomics approaches. Plant Molecular Biology, 2007, 65, 417-425.	3.9	14
62	A rice DEAD-box protein, OsRH36, can complement an Arabidopsis atrh36 mutant, but cannot functionally replace its yeast homolog Dbp8p. Plant Molecular Biology, 2010, 74, 119-128.	3.9	13
63	The modified rice αAmy8 promoter confers high-level foreign gene expression in a novel hypoxia-inducible expression system in transgenic rice seedlings. Plant Molecular Biology, 2014, 85, 147-161.	3.9	11
64	T-DNA Insertion Mutants as a Resource for Rice Functional Genomics. , 2007, , 181-221.		10
65	An ABA-responsive bZIP protein, OsBZ8, mediates sugar repression of α -amylase gene expression. Physiologia Plantarum, 2003, 119, 78-86.	5.2	8
66	Glycosylation Variants of a β-Glucosidase Secreted by a Taiwanese Fungus, Chaetomella raphigera, Exhibit Variant-Specific Catalytic and Biochemical Properties. PLoS ONE, 2014, 9, e106306.	2.5	8
67	Molecular cloning and characterization of a novel starvation inducible MAP kinase gene in rice. Plant Physiology and Biochemistry, 2003, 41, 207-213.	5.8	7
68	Lack of Genotype and Phenotype Correlation in a Rice T-DNA Tagged Line Is Likely Caused by Introgression in the Seed Source. PLoS ONE, 2016, 11, e0155768.	2.5	7
69	The Nucleotideâ€Dependent Interactome of Rice Heterotrimeric Gâ€Protein α â€Subunit. Proteomics, 2019, 19, 1800385.	2.2	6
70	Knockdown expression of a MYB-related transcription factor gene, OsMYBS2, enhances production of recombinant proteins in rice suspension cells. Plant Methods, 2021, 17, 99.	4.3	5
71	Methods for Rice Phenomics Studies. Methods in Molecular Biology, 2011, 678, 129-138.	0.9	5

Activation Tagging Systems in Rice. , 2007, , 333-353.

#	Article	IF	CITATIONS
73	Ectopic Expression of WINDING 1 Leads to Asymmetrical Distribution of Auxin and a Spiral Phenotype in Rice. Plant and Cell Physiology, 2017, 58, 1494-1506.	3.1	3
74	From simple and specific zymographic detections to the annotation of a fungus Daldinia caldariorum D263 that encodes a wide range of highly bioactive cellulolytic enzymes. Biotechnology for Biofuels, 2021, 14, 120.	6.2	2
75	TTRSIS: A Cloud Computing Platform for Rice Functional Genomics Research through a Reverse Genetics Approach. , 2011, , .		1
76	A unique self-truncation of bacterial GH5 endoglucanases leads to enhanced activity and thermostability. BMC Biology, 2022, 20, .	3.8	1