
Paul O'brien

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1794323/publications.pdf Version: 2024-02-01

DALLI O'RDIEN

#	Article	IF	CITATIONS
1	Nanocrystalline Semiconductors:Â Synthesis, Properties, and Perspectives. Chemistry of Materials, 2001, 13, 3843-3858.	3.2	1,214
2	Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution. Journal of Materials Chemistry, 2004, 14, 2575-2591.	6.7	695
3	Production of few-layer phosphorene by liquid exfoliation of black phosphorus. Chemical Communications, 2014, 50, 13338-13341.	2.2	667
4	Synthesis, Properties, and Applications of Transition Metal-Doped Layered Transition Metal Dichalcogenides. Chemistry of Materials, 2016, 28, 1965-1974.	3.2	424
5	The association between sterilizing activity and drug distribution into tuberculosis lesions. Nature Medicine, 2015, 21, 1223-1227.	15.2	387
6	Precursor Chemistry for Main Group Elements in Semiconducting Materials. Chemical Reviews, 2010, 110, 4417-4446.	23.0	316
7	Synthesis of CdS and CdSe Nanocrystallites Using a Novel Single-Molecule Precursors Approach. Chemistry of Materials, 1997, 9, 523-530.	3.2	293
8	Optical Properties of ZnO Nanocrystals Doped with Cd, Mg, Mn, and Fe Ions. Journal of Physical Chemistry B, 2006, 110, 21412-21415.	1.2	287
9	A Low Curing Temperature Silver Ink for Use in Ink-Jet Printing and Subsequent Production of Conductive Tracks. Macromolecular Rapid Communications, 2005, 26, 315-318.	2.0	285
10	Air-Stable Single-Source Precursors for the Synthesis of Chalcogenide Semiconductor Nanoparticles. Chemistry of Materials, 2001, 13, 913-920.	3.2	269
11	Hybrid polymer/metal oxide solar cells based on ZnO columnar structures. Journal of Materials Chemistry, 2006, 16, 2088.	6.7	259
12	Room-Temperature Lasing Observed from ZnO Nanocolumns Grown by Aqueous Solution Deposition. Advanced Materials, 2002, 14, 1221-1224.	11.1	245
13	Developing an understanding of the processes controlling the chemical bath deposition of ZnS and CdS. Journal of Materials Chemistry, 1998, 8, 2309-2314.	6.7	241
14	Mesocrystals: A New Class of Solid Materials. Small, 2008, 4, 1566-1574.	5.2	237
15	Quantum-dot concentrator and thermodynamic model for the global redshift. Applied Physics Letters, 2000, 76, 1197-1199.	1.5	234
16	Recent developments in II–VI and III–VI semiconductors and their applications in solar cells. Journal of Materials Chemistry, 2006, 16, 1597-1602.	6.7	229
17	Tin(II) Sulfide (SnS) Nanosheets by Liquid-Phase Exfoliation of Herzenbergite: IV–VI Main Group Two-Dimensional Atomic Crystals. Journal of the American Chemical Society, 2015, 137, 12689-12696.	6.6	220
18	Nanostructured Aptamer-Functionalized Black Phosphorus Sensing Platform for Label-Free Detection of Myoglobin, a Cardiovascular Disease Biomarker. ACS Applied Materials & Interfaces, 2016, 8, 22860-22868.	4.0	208

#	Article	IF	CITATIONS
19	The Chemical Vapor Deposition of Nickel Phosphide or Selenide Thin Films from a Single Precursor. Journal of the American Chemical Society, 2008, 130, 2420-2421.	6.6	207
20	Routes to copper zinc tin sulfide Cu2ZnSnS4 a potential material for solar cells. Chemical Communications, 2012, 48, 5703.	2.2	204
21	A Simple Route to the Synthesis of Core/Shell Nanoparticles of Chalcogenides. Chemistry of Materials, 2002, 14, 2004-2010.	3.2	201
22	A Novel Route for the Preparation of CuSe and CuInSe2 Nanoparticles. Advanced Materials, 1999, 11, 1441-1444.	11.1	186
23	Mesocrystals — Properties and Applications. Journal of Physical Chemistry Letters, 2012, 3, 620-628.	2.1	179
24	A Facile Synthesis of Uniform NH ₄ TiOF ₃ Mesocrystals and Their Conversion to TiO ₂ Mesocrystals. Journal of the American Chemical Society, 2008, 130, 1309-1320.	6.6	177
25	Syntheses of semiconductor nanoparticles using single-molecular precursors. Chemical Record, 2001, 1, 467-479.	2.9	169
26	Novel low temperature solution deposition of perpendicularly orientated rods of ZnO: substrate effects and evidence of the importance of counter-ions in the control of crystallite growth. Chemical Communications, 2002, , 80-81.	2.2	161
27	A single source approach to the synthesis of CdSe nanocrystallites. Advanced Materials, 1996, 8, 161-163.	11.1	160
28	Synthesis of PbS nanocrystallites using a novel single molecule precursors approach: X-ray single-crystal structure of Pb(S2CNEtPri)2. Journal of Materials Chemistry, 1997, 7, 1011-1016.	6.7	152
29	Synthesis of TOPO-capped Mn-doped ZnS and CdS quantum dots. Journal of Materials Chemistry, 2001, 11, 2382-2386.	6.7	148
30	Cadmium ethylxanthate: A novel single-source precursor for the preparation of CdS nanoparticles. Journal of Materials Chemistry, 2002, 12, 2722-2725.	6.7	144
31	Fully printed high performance humidity sensors based on two-dimensional materials. Nanoscale, 2018, 10, 5599-5606.	2.8	142
32	The effect of processing conditions on varistors prepared from nanocrystalline ZnO. Journal of Materials Chemistry, 2003, 13, 2586-2590.	6.7	138
33	Synthesis of Lateral Size-Controlled Monolayer 1 <i>H-</i> MoS ₂ @Oleylamine as Supercapacitor Electrodes Chemistry of Materials, 2016, 28, 657-664.	3.2	134
34	A New Route to Antimony Telluride Nanoplates from a Single-Source Precursor. Journal of the American Chemical Society, 2006, 128, 3120-3121.	6.6	133
35	Organotin Dithiocarbamates: Single-Source Precursors for Tin Sulfide Thin Films by Aerosol-Assisted Chemical Vapor Deposition (AACVD). Chemistry of Materials, 2013, 25, 266-276.	3.2	129
36	Routes to Nanostructured Inorganic Materials with Potential for Solar Energy Applications. Chemistry of Materials, 2013, 25, 3551-3569.	3.2	129

#	Article	IF	CITATIONS
37	A Role for Molecular Oxygen in the Formation of DNA Damage during the Reduction of the Carcinogen Chromium(VI) by Glutathione. Archives of Biochemistry and Biophysics, 1996, 329, 199-207.	1.4	127
38	Using coordination chemistry to develop new routes to semiconductor and other materials. Coordination Chemistry Reviews, 2007, 251, 1878-1888.	9.5	124
39	Correlating Catalytic Activity of Ag–Au Nanoparticles with 3D Compositional Variations. Nano Letters, 2014, 14, 1921-1926.	4.5	119
40	Deposition of Bismuth Chalcogenide Thin Films Using Novel Single-Source Precursors by Metal-Organic Chemical Vapor Deposition. Chemistry of Materials, 2004, 16, 3289-3298.	3.2	117
41	The preparation of cobalt phosphide and cobalt chalcogenide (CoX, X = S, Se) nanoparticles from single source precursors. Journal of Materials Chemistry, 2010, 20, 2329.	6.7	117
42	Surface-Enhanced Raman Scattering from Intracellular and Extracellular Bacterial Locations. Analytical Chemistry, 2008, 80, 6741-6746.	3.2	114
43	Synthesis of Single-Crystalline CoP Nanowires by a One-Pot Metalâ^'Organic Route. Journal of the American Chemical Society, 2005, 127, 16020-16021.	6.6	112
44	Transient Optical Studies of Interfacial Charge Transfer at Nanostructured Metal Oxide/PbS Quantum Dot/Organic Hole Conductor Heterojunctions. Journal of the American Chemical Society, 2010, 132, 2743-2750.	6.6	110
45	The synthesis of amine-capped magnetic (Fe, Mn, Co, Ni) oxide nanocrystals and their surface modification for aqueous dispersibility. Journal of Materials Chemistry, 2006, 16, 2175.	6.7	109
46	Novel precursors for the growth of α-In2S3: trisdialkyldithiocarbamates of indium. Thin Solid Films, 1998, 315, 57-61.	0.8	106
47	Growth of epitaxial and highly oriented thin films of cadmium and cadmium zinc sulfide by low-pressure metalorganic chemical vapour deposition using diethyldithiocarbamates. Journal of Crystal Growth, 1989, 96, 989-992.	0.7	105
48	Preparation of zinc oxide and zinc sulfide powders by controlled precipitation from aqueous solution. Journal of Materials Chemistry, 1994, 4, 1611.	6.7	101
49	Speciation and the nature of ZnO thin films from chemical bath deposition. Journal of Materials Chemistry, 1996, 6, 1135.	6.7	101
50	Chronic pulmonary cavitary tuberculosis in rabbits: a failed host immune response. Open Biology, 2011, 1, 110016.	1.5	99
51	Growth of lead chalcogenide thin films using single-source precursors. Journal of Materials Chemistry, 2004, 14, 1310.	6.7	96
52	The chemical vapor deposition of Cu2ZnSnS4 thin films. Chemical Science, 2011, 2, 1170.	3.7	95
53	Chromium(V) can be generated in the reduction of chromium(VI) by glutathione. Inorganica Chimica Acta, 1985, 108, L19-L20.	1.2	94
54	A greener route to photoelectrochemically active PbS nanoparticles. Journal of Materials Chemistry, 2010, 20, 2336.	6.7	93

#	Article	IF	CITATIONS
55	On the interaction of copper(<scp>ii</scp>) with disulfiram. Chemical Communications, 2014, 50, 13334-13337.	2.2	92
56	Single source molecular precursors for the deposition of III/VI chalcogenide semiconductors by MOCVD and related techniques. Dalton Transactions RSC, 2000, , 4479-4486.	2.3	91
57	Deposition and characterisation of ZnO thin films grown by chemical bath deposition. Thin Solid Films, 1995, 271, 35-38.	0.8	88
58	The crystal and molecular structure of N,N-diethyldiselenocarbamatocadmium(II): Cadmium and zinc diethyldiselenocarbamates as precursors for selenides. Polyhedron, 1992, 11, 45-48.	1.0	87
59	Evidence that the reactions of cadmium in the presence of metallothionein can produce hydroxyl radicals. Archives of Toxicology, 1998, 72, 690-700.	1.9	87
60	Remarkable Magneto-Optical Properties of Europium Selenide Nanoparticles with Wide Energy Gaps. Journal of the American Chemical Society, 2008, 130, 5710-5715.	6.6	87
61	Routes to tin chalcogenide materials as thin films or nanoparticles: a potentially important class of semiconductor for sustainable solar energy conversion. Inorganic Chemistry Frontiers, 2014, 1, 577-598.	3.0	87
62	Nearâ€Unity Quantum Yields from Chloride Treated CdTe Colloidal Quantum Dots. Small, 2015, 11, 1548-1554.	5.2	86
63	A one-step synthesis of cadmium selenide quantum dots from a novel single source precursor. Chemical Communications, 2003, , 1454.	2.2	85
64	The N-alkyldithiocarbamato complexes [M(S2CNHR)2] (M = Cd(ii) Zn(ii); R = C2H5, C4H9, C6H13, C12H25); their synthesis, thermal decomposition and use to prepare of nanoparticles and nanorods of CdS. Dalton Transactions, 2006, , 4499.	1.6	85
65	Nanocrystalline ZnO with Ultraviolet Luminescence. Journal of Physical Chemistry B, 2006, 110, 4099-4104.	1.2	85
66	Ambient-air-stable inorganic Cs ₂ Snl ₆ double perovskite thin films <i>via</i> aerosol-assisted chemical vapour deposition. Journal of Materials Chemistry A, 2018, 6, 11205-11214.	5.2	85
67	Single-molecule precursor chemistry for the deposition of chalcogenide(S or Se)-containing compound semiconductors by MOCVD and related methods. Journal of Materials Chemistry, 1995, 5, 1761.	6.7	84
68	Quantum dot-labelled polymer beads by suspension polymerisation. Chemical Communications, 2003, , 2532.	2.2	84
69	In Situ Synthesis of PbS Nanocrystals in Polymer Thin Films from Lead(II) Xanthate and Dithiocarbamate Complexes: Evidence for Size and Morphology Control. Chemistry of Materials, 2015, 27, 2127-2136.	3.2	84
70	Shining a light on transition metal chalcogenides for sustainable photovoltaics. Chemical Science, 2017, 8, 4177-4187.	3.7	84
71	Synthesis and X-ray single crystal structures of bis(diisobutyldithiophosphinato)cadmium(II) or zinc(II): Potential single-source precursors for II/VI materials. Polyhedron, 2000, 19, 211-215.	1.0	83
72	Deposition of iron sulfide nanocrystals from single source precursors. Journal of Materials Chemistry, 2011, 21, 9737.	6.7	82

5

#	Article	IF	CITATIONS
73	A simple one phase preparation of organically capped gold nanocrystals. Chemical Communications, 2000, , 183-184.	2.2	81
74	Deposition of II-VI Thin Films by LP-MOCVD Using Novel Single-Source Precursors. European Journal of Inorganic Chemistry, 2004, 2004, 171-177.	1.0	79
75	Uniform NH4TiOF3mesocrystals prepared by an ambient temperature self-assembly process and their topotaxial conversion to anatase. Chemical Communications, 2007, , 144-146.	2.2	78
76	Power law carrier dynamics in semiconductor nanocrystals at nanosecond timescales. Applied Physics Letters, 2008, 92, 101111.	1.5	78
77	Solid state synthesis of tin-doped ZnO at room temperature: Characterization and its enhanced gas sensing and photocatalytic properties. Journal of Hazardous Materials, 2011, 193, 194-199.	6.5	78
78	Thin Films of Molybdenum Disulfide Doped with Chromium by Aerosol-Assisted Chemical Vapor Deposition (AACVD). Chemistry of Materials, 2015, 27, 1367-1374.	3.2	78
79	In situ investigation of degradation at organometal halide perovskite surfaces by X-ray photoelectron spectroscopy at realistic water vapour pressure. Chemical Communications, 2017, 53, 5231-5234.	2.2	78
80	The chemistry underlying chromate toxicity. Transition Metal Chemistry, 1995, 20, 636-642.	0.7	77
81	Chemical routes to chalcogenide materials as thin films or particles with critical dimensions with the order of nanometres. Journal of Materials Chemistry, 2010, 20, 4031.	6.7	77
82	A single-source route to CdS nanorods. Chemical Communications, 2002, , 564-565.	2.2	76
83	Phase Control in the Synthesis of Magnetic Iron Sulfide Nanocrystals From a Cubane-Type Feâ^'S Cluster. Journal of the American Chemical Society, 2008, 130, 17256-17257.	6.6	76
84	Electronic and surface properties of PbS nanoparticles exhibiting efficient multiple exciton generation. Physical Chemistry Chemical Physics, 2011, 13, 20275.	1.3	76
85	The interaction of \hat{I}^2 -N -methylamino-L-alanine with bicarbonate: an 1 H-NMR study. FEBS Letters, 1989, 251, 31-35.	1.3	75
86	Metal complexes of selenophosphinates from reactions with (R2PSe)2Se: [M(R2PSe2)n] (M = ZnII, CdII,) Tj ETQqQ 2182.) 0 0 rgBT 2.2	/Overlock 10 75
87	Ambient pressure aerosol-assisted chemical vapour deposition of (CH ₃ NH ₃)PbBr ₃ , an inorganic–organic perovskite important in photovoltaics. Chemical Communications, 2014, 50, 6319-6321.	2.2	75
88	Thin films of tin(II) sulphide (SnS) by aerosol-assisted chemical vapour deposition (AACVD) using tin(II) dithiocarbamates as single-source precursors. Journal of Crystal Growth, 2015, 415, 93-99.	0.7	75
89	Storage lipid studies in tuberculosis reveal that foam cell biogenesis is disease-specific. PLoS Pathogens, 2018, 14, e1007223.	2.1	75
90	Mixed alkyl dialkylthiocarbamates of zinc and cadmium: potential precursors for II/VI materials. X-ray crystal structure of [MeZnS2CNEt2]2. Organometallics, 1991, 10, 730-732.	1.1	74

#	Article	IF	CITATIONS
91	Surface Properties of Nanocrystalline PbS Films Deposited at the Water–Oil Interface: A Study of Atmospheric Aging. Langmuir, 2015, 31, 1445-1453.	1.6	74
92	Electronic properties and crystal structure of (2,2′-bipyridyl)-catena-µ-(oxalato-O1O2: O1′O2′)-copper(II dihydrate and aqua(2,2′-bipyridyl)-(oxalato-O1O2)copper(II) dihydrate. Journal of the Chemical Society Dalton Transactions, 1982, , 1117-1121.) 1.1	73
93	Synthesis, characterization and x-ray crystal structures of asymmetric bis(dialkyldithiocarbamates) of zinc: Potential precursors for ZnS deposition. Polyhedron, 1996, 15, 2801-2808.	1.0	71
94	Deposition and characterization of cadmium sulfide thin films by chemical bath deposition. Journal of Crystal Growth, 1996, 158, 497-504.	0.7	71
95	Chemical Vapor Deposition of Indium Selenide and Gallium Selenide Thin Films from Mixed Alkyl/Dialkylselenophosphorylamides. Chemistry of Materials, 2003, 15, 4205-4210.	3.2	71
96	The single molecular precursor approach to metal telluride thin films: imino-bis(diisopropylphosphine tellurides) as examples. Chemical Society Reviews, 2007, 36, 1622.	18.7	71
97	Host-Mediated Bioactivation of Pyrazinamide: Implications for Efficacy, Resistance, and Therapeutic Alternatives. ACS Infectious Diseases, 2015, 1, 203-214.	1.8	71
98	Physicochemical and physiological effects on the uptake of dissolved zinc and cadmium by the amphipod crustacean Orchestia gammarellus. Aquatic Toxicology, 1993, 25, 15-30.	1.9	70
99	Pyramidal Lead Sulfide Crystallites With High Energy {113} Facets. Journal of the American Chemical Society, 2008, 130, 10892-10894.	6.6	70
100	Metal complexes of thiobiurets and dithiobiurets: Novel single source precursors for metal sulfide thin film nanostructures. Dalton Transactions, 2010, 39, 1460-1463.	1.6	70
101	New routes to copper sulfide nanostructures and thin films. Journal of Materials Chemistry, 2011, 21, 17888.	6.7	70
102	Synthesis of ZnO Hexagonal Single-Crystal Slices with Predominant (0001) and (0001Ì) Facets by Poly(ethylene glycol)-Assisted Chemical Bath Deposition. Journal of the American Chemical Society, 2009, 131, 15106-15107.	6.6	69
103	Title is missing!. Journal of Materials Science: Materials in Electronics, 2002, 13, 531-535.	1.1	68
104	Synthesis, Structures, and Multinuclear NMR Spectra of Tin(II) and Lead(II) Complexes of Tellurium-Containing Imidodiphosphinate Ligands: Preparation of Two Morphologies of Phase-Pure PbTe from a Single-Source Precursor. Inorganic Chemistry, 2010, 49, 1198-1205.	1.9	68
105	Synthesis of isotopically modified ZnO nanoparticles and their potential as nanotoxicity tracers. Environmental Pollution, 2011, 159, 266-273.	3.7	68
106	Synthesis and Characterization of Some Mixed Alkyl Thiocarbamates of Gallium and Indium, Precursors for III/VI Materials: The X-ray Single-Crystal Structures of Dimethyl- and Diethylindium Diethyldithiocarbamate. Chemistry of Materials, 1995, 7, 716-724.	3.2	67
107	The X-ray crystal structures of the cadmium complexes of pyridine-1-thiol and mercaptobenzothiazole, [cd(C5H4NS)2]n And [Cd(C7H4N2S2)2]n: Two unusual volatile polymeric complexes. Polyhedron, 1990, 9, 541-544.	1.0	66
108	Synthesis of CdS and CdSe nanoparticles by thermolysis of diethyldithio-or diethyldiseleno-carbamates of cadmium. Journal of Materials Chemistry, 1996, 6, 343.	6.7	66

#	Article	IF	CITATIONS
109	Uptake of chromium (III) complexes by erythrocytes. Toxicological and Environmental Chemistry, 1987, 14, 23-32.	0.6	65
110	Single-source molecular precursors for the deposition of zinc selenide quantum dots. Journal of Materials Chemistry, 1998, 8, 1885-1888.	6.7	65
111	The synthesis, X-ray structures and CVD studies of some group 11 complexes of iminobis(diisopropylphosphine selenides) and their use in the deposition of I/III/VI photovoltaic materials. Journal of Materials Chemistry, 2004, 14, 233.	6.7	65
112	Selective excitation of Eu ³⁺ in the core of small β-NaGdF ₄ nanocrystals. Journal of Materials Chemistry C, 2013, 1, 801-807.	2.7	65
113	Ethambutol Partitioning in Tuberculous Pulmonary Lesions Explains Its Clinical Efficacy. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	65
114	Indium sulfide nanorods from single-source precursor. Chemical Communications, 2004, , 334.	2.2	64
115	Cobalt(II) complexes of the antibiotic sulfadiazine, the X-ray single crystal structure of [Co(C10H9N4O2S)2(CH3OH)2]. Inorganica Chimica Acta, 2006, 359, 3111-3116.	1.2	64
116	Synthesis of the nickel selenophosphinates [Ni(Se2PR2)2] (R = iPr, tBu and Ph) and their use as single source precursors for the deposition of nickel phosphide or nickel selenide nanoparticles. Dalton Transactions, 2009, , 2103.	1.6	64
117	Asymmetric MoS ₂ /Graphene/Metal Sandwiches: Preparation, Characterization, and Application. Advanced Materials, 2016, 28, 8256-8264.	11.1	64
118	Gallium arsenide nanoparticles: synthesis and characterisation. Journal of Materials Chemistry, 2003, 13, 2591.	6.7	63
119	A novel method for synthesizing EuS nanocrystals from a single-source precursor under white LED irradiation. Chemical Communications, 2005, , 242.	2.2	63
120	Structural studies of some Group 12 metal alkyl adducts: the X-ray crystal structures of Me2Zn[Me2N(CH2)2NMe 2], Me2Cd[Me2N(CH2)2NMe2], (Me3CCH2)2Zn[Me2N(CH2)2NMe2] and (Me3CCH2)2Cd[Me2N(CH2)2NMe2]. Journal of Organometallic Chemistry, 1993, 449, 1-8.	0.8	62
121	Deposition of CdSe thin films using a novel single-source precursor; [MeCd{(SePiPr2)2N}]2. Journal of Materials Chemistry, 2003, 13, 639-640.	6.7	62
122	Thio- and Dithio-Biuret Precursors for Zinc Sulfide, Cadmium Sulfide, and Zinc Cadmium Sulfide Thin Films. Chemistry of Materials, 2011, 23, 1471-1481.	3.2	62
123	Salicylideneserinato complexes of vanadium. Crystal structure of the sodium salt of a complex of vanadium-(IV) and -(V). Journal of the Chemical Society Dalton Transactions, 1992, , 1745.	1.1	61
124	Neopentyl- or tert-butylzinc complexes with diethylthio- or diethylselenocarbamates: precursors for zinc chalcogens. Organometallics, 1992, 11, 3136-3139.	1,1	61
125	Properties of cadmium sulphide films grown by single-source metalorganic chemical vapour deposition with dithiocarbamate precursors. Journal of Crystal Growth, 1996, 167, 133-142.	0.7	61
126	Novel approach to the chemical bath deposition of chalcogenide semiconductors. Thin Solid Films, 2000, 361-362, 150-154.	0.8	61

#	Article	IF	CITATIONS
127	Single source molecular precursor routes to lead chalcogenides. Dalton Transactions, 2012, 41, 10497.	1.6	60
128	The CVD of silver selenide films from dichalcogenophosphinato and imidodichalcogenodiphosphinatosilver(I) single-source precursors. Journal of Materials Chemistry, 2009, 19, 419-427.	6.7	59
129	Controlled Synthesis of Tuned Bandgap Nanodimensional Alloys of PbS _{<i>x</i>} Se _{1a~'<i>x</i>} . Journal of the American Chemical Society, 2011, 133, 5602-5609.	6.6	59
130	Transition metal doped pyrite (FeS ₂) thin films: structural properties and evaluation of optical band gap energies. Journal of Materials Chemistry C, 2015, 3, 12068-12076.	2.7	59
131	Novel singleÂmolecule precursor routes for the direct synthesis of InS and InSe quantum dots. Journal of Materials Chemistry, 1999, 9, 2885-2888.	6.7	58
132	Synthesis and characterisation of some N-alkyl/aryl and N,N′-dialkyl/aryl thiourea cadmium(II) complexes: the single crystal X-ray structures of [CdCl2(CS(NH2)NHCH3)2]n and [CdCl2(CS(NH2)NHCH2CH3)2]. Polyhedron, 2003, 22, 595-603.	1.0	58
133	Investigation of the Internal Heterostructure of Highly Luminescent Quantum Dotâ^'Quantum Well Nanocrystals. Journal of the American Chemical Society, 2009, 131, 470-477.	6.6	58
134	A simple route to synthesise nanodimensional CdSe–CdS core–shell structures from single molecule precursors. Chemical Communications, 1999, , 1573-1574.	2.2	57
135	Chemical vapour deposition of Il–VI semiconductor thin films using M[(TePiPr2)2N]2(M = Cd, Hg) as single-source precursors. Journal of Materials Chemistry, 2006, 16, 966-969.	6.7	56
136	Bis(piperidinedithiocarbamato)pyridinecadmium(<scp>ii</scp>) as a single-source precursor for the synthesis of CdS nanoparticles and aerosol-assisted chemical vapour deposition (AACVD) of CdS thin films. New Journal of Chemistry, 2014, 38, 6073-6080.	1.4	55
137	Comparison of solar cells sensitised by CdTe/CdSe and CdSe/CdTe core/shell colloidal quantum dots with and without a CdS outer layer. Thin Solid Films, 2014, 560, 65-70.	0.8	55
138	A novel metalorganic route for the direct and rapid synthesis of monodispersed quantum dots of indium phosphide. Chemical Communications, 1998, , 2459-2460.	2.2	54
139	A novel single source precursor route to self capping CdS quantum dots. Chemical Communications, 1999, , 2041-2042.	2.2	54
140	Novel inorganic rings and materials deposition. Journal of Organometallic Chemistry, 2007, 692, 2669-2677.	0.8	54
141	Nickel and Iron Sulfide Nanoparticles from Thiobiurets. Journal of Physical Chemistry C, 2012, 116, 2253-2259.	1.5	54
142	Mixed methyl and ethylzinc complexes with diethylselenocarbamate: novel precursors for zinc selenide. Chemistry of Materials, 1991, 3, 999-1000.	3.2	53
143	Synthesis of PbSe nanocrystallites using a single-source method. The X-ray crystal structure of lead (II) diethyldiselenocarbamate. Polyhedron, 1999, 18, 1171-1175.	1.0	53
144	Preparation of zinc containing materials. New Journal of Chemistry, 2007, 31, 2029.	1.4	53

#	Article	IF	CITATIONS
145	Synthesis and characterization of some mixed alkyl selenocarbamates of zinc and cadmium: novel precursors for II/VI materials. Journal of Materials Chemistry, 1992, 2, 949.	6.7	52
146	Studies of the thermal decomposition of some diselenocarbamato complexes of cadmium or zinc: molecular design for the deposition of MSe films by CVD. Journal of Materials Chemistry, 1999, 9, 2433-2437.	6.7	52
147	A Novel Metalorganic Route to Nanocrystallites of Zinc Phosphide. Chemistry of Materials, 2001, 13, 4500-4505.	3.2	52
148	Tribenzyltin(IV)chloride Thiosemicarbazones: Novel Single Source Precursors for Growth of SnS Thin Films. Chemical Vapor Deposition, 2008, 14, 292-295.	1.4	52
149	The Use of Bismuth(III) Dithiocarbamato Complexes as Precursors for the Low-Pressure MOCVD of Bi2S3. Chemical Vapor Deposition, 2000, 6, 230-232.	1.4	51
150	Deposition of zinc sulfide quantum dots from a single-source molecular precursor. Journal of Materials Research, 1999, 14, 3237-3240.	1.2	50
151	Controlled synthesis of PbS nanoparticles and the deposition of thin films by Aerosol-Assisted Chemical Vapour Deposition (AACVD). Journal of Materials Chemistry, 2010, 20, 6116.	6.7	50
152	Flow reactor synthesis of CdSe, CdS, CdSe/CdS and CdSeS nanoparticles from single molecular precursor(s). Journal of Materials Chemistry, 2011, 21, 18768.	6.7	50
153	A One-Pot Synthesis of Monodispersed Iron Cobalt Oxide and Iron Manganese Oxide Nanoparticles from Bimetallic Pivalate Clusters. Chemistry of Materials, 2014, 26, 999-1013.	3.2	50
154	Mechanical Properties of Molybdenum Disulfide and the Effect of Doping: An in Situ TEM Study. ACS Applied Materials & Interfaces, 2015, 7, 20829-20834.	4.0	50
155	MOCVD Layer growth of ZnSe and ZnS / ZnSe multiple layers using nitrogen containing adducts of dimethylzinc. Journal of Crystal Growth, 1990, 104, 601-609.	0.7	49
156	A colloidal synthesis of CuInSe2, CuGaSe2 and CuIn1â^'xGaxSe2 nanoparticles from diisopropyldiselenophosphinatometal precursors. Nanoscale, 2011, 3, 5132.	2.8	49
157	Heterocyclic dithiocarbamato-iron(<scp>iii</scp>) complexes: single-source precursors for aerosol-assisted chemical vapour deposition (AACVD) of iron sulfide thin films. Dalton Transactions, 2016, 45, 2647-2655.	1.6	49
158	The preparation of antimony chalcogenide and oxide nanomaterials. Journal of Materials Chemistry, 2005, 15, 4949.	6.7	48
159	Iron Thiobiurets: Single-Source Precursors for Iron Sulfide Thin Films. Inorganic Chemistry, 2010, 49, 8495-8503.	1.9	48
160	The isolation and characterization of a chromium(V) containing complex from the reaction of glutathione with chromate. Inorganica Chimica Acta, 1990, 169, 265-269.	1.2	47
161	Triazine adducts of dimethylzinc and dimethylcadmium: x-ray crystal structure of Me2Zn[(CH2NMe)3]2. Organometallics, 1991, 10, 3196-3200.	1.1	47
162	A Novel Synthesis of Cadmium Phosphide Nanoparticles Using the Single-Source Precursor [MeCdPtBu2]3. Advanced Materials, 1998, 10, 527-528.	11.1	46

#	Article	IF	CITATIONS
163	Deposition of MSe (M = Cd, Zn) Filmsby LP-MOCVD from Novel Single-Source Precursors M[(SePPh2)2N]2. Chemical Vapor Deposition, 2002, 8, 187-189.	1.4	46
164	A single source approach to deposition of nickel sulfide thin films by LP-MOCVD. Thin Solid Films, 2003, 431-432, 502-505.	0.8	46
165	Aerosol-assisted chemical vapour deposition of indium telluride thin films from {In(μ-Te)[N(iPr2PTe)2]}3. Journal of Materials Chemistry, 2006, 16, 4542-4547.	6.7	46
166	Ligand influence on the formation of P/Se semiconductor materials from metal–organic complexes. Dalton Transactions, 2008, , 4499.	1.6	46
167	Chemical vapour deposition of rhenium disulfide and rhenium-doped molybdenum disulfide thin films using single-source precursors. Journal of Materials Chemistry C, 2016, 4, 2312-2318.	2.7	46
168	Mixed alkyl zinc or cadmium complexes with dialkyl thio- or selenocarbamates: Precursors for cadmium chalcogenides. Advanced Materials for Optics and Electronics, 1994, 3, 171-175.	0.5	45
169	Synthesis of CdS nanocrystals using cadmium dichloride and trioctylphosphine sulfide. Journal of Materials Chemistry, 1999, 9, 1381-1382.	6.7	45
170	Deposition of Thin Films of Gallium Sulfide from a Novel Single-Source Precursor, Ga(S2CNMeHex)3, by Low-Pressure Metalâ^'Organic Chemical Vapor Deposition. Chemistry of Materials, 1999, 11, 3430-3432.	3.2	45
171	The synthesis of metallic and semiconducting nanoparticles from reactive melts of precursors. Journal of Materials Chemistry A, 2014, 2, 570-580.	5.2	45
172	The effect of alkyl chain length on the structure of lead(<scp>ii</scp>) xanthates and their decomposition to PbS in melt reactions. Dalton Transactions, 2016, 45, 16345-16353.	1.6	45
173	Methylzinc or methylcadmium-N,N,N-trimethyl- propylenediaminedithiocarbamates: Precursors for zinc or cadmium sulfide. The X-ray crystal structure of methylcadmiumtrimethylpropylene-diaminedithiocarbamate benzene solvate. Advanced Materials, 1993, 5, 653-654.	11.1	44
174	Synthesis of TOPO-capped PtS and PdS nanoparticles from [Pt(S2CNMe(Hex))2] and [Pd(S2CNMe(Hex))2]. Journal of Materials Chemistry, 2002, 12, 92-97.	6.7	44
175	Phosphine stabilized copper(i) complexes of dithiocarbamates and xanthates and their decomposition pathways. New Journal of Chemistry, 2011, 35, 2773.	1.4	44
176	MOCVD of Strontium Tantalate Thin Films Using Novel Bimetallic Alkoxide Precursors. Chemical Vapor Deposition, 1999, 5, 9-12.	1.4	43
177	Deposition of Ni and Pd Sulfide Thin Films via Aerosol-Assisted CVD. Chemical Vapor Deposition, 2006, 12, 620-626.	1.4	43
178	Syntheses, X-ray structures and AACVD studies of group 11 ditelluroimidodiphosphinate complexes. Dalton Transactions, 2007, , 1528.	1.6	43
179	Synthesis, characterization, 113Cd NMR and decomposition of some cadmium thiolates. Polyhedron, 1991, 10, 325-332.	1.0	42
180	Novel approach to the deposition of CdS by chemical bath deposition: the deposition of crystalline thin films of CdS from acidic baths. Journal of Materials Chemistry, 1999, 9, 725-729.	6.7	42

#	Article	IF	CITATIONS
181	The importance of ternary complexes in defining basic conditions for the deposition of ZnS by aqueous chemical bath deposition. Thin Solid Films, 2000, 361-362, 17-21.	0.8	42
182	Cd(NH2CSNHNHCSNH2)Cl2: a new single-source precursor for the preparation of CdS nanoparticles. Polyhedron, 2003, 22, 3129-3135.	1.0	42
183	The deposition of thin films of CuME2 by CVD techniques (M = In, Ga and E = S, Se). Journal of Materials Chemistry, 2003, 13, 1942.	6.7	42
184	Synthesis, characterization and preliminary insulin-enhancing studies of symmetrical tetradentate Schiff base complexes of oxovanadium(IV). Inorganica Chimica Acta, 2009, 362, 3993-4001.	1.2	42
185	A Single-Source Precursor Route to Unusual PbSe Nanostructures by a Solution–Liquid–Solid Method. Journal of the American Chemical Society, 2012, 134, 2485-2487.	6.6	42
186	Sequential bottom-up and top-down processing for the synthesis of transition metal dichalcogenide nanosheets: the case of rhenium disulfide (ReS ₂). Chemical Communications, 2016, 52, 7878-7881.	2.2	42
187	Castor oil: a suitable green source of capping agent for nanoparticle syntheses and facile surface functionalization. Royal Society Open Science, 2018, 5, 180824.	1.1	42
188	Fluoroquinolone Efficacy against Tuberculosis Is Driven by Penetration into Lesions and Activity against Resident Bacterial Populations. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	42
189	The reduction of chromate is a prerequisite of chromium binding to cell nuclei. Carcinogenesis, 1991, 12, 1143-1144.	1.3	41
190	The Growth of Indium Selenide Thin Films from a Novel Asymmetric Dialkyldiselenocarbamate of Indium. Chemical Vapor Deposition, 1997, 3, 227-229.	1.4	41
191	The preparation of organically functionalised chromium and nickel nanoparticles. Chemical Communications, 2001, , 1912-1913.	2.2	41
192	In situ kinetic studies of the chemical bath deposition of zinc sulfide from acidic solutions. Journal of Materials Chemistry, 2002, 12, 2940-2944.	6.7	41
193	Facile and reproducible syntheses of bis(dialkylselenophosphenyl)-selenides and -diselenides: X-ray structures of (iPr2PSe)2Se, (iPr2PSe)2Se2 and (Ph2PSe)2Se. Chemical Communications, 2006, , 2179.	2.2	41
194	Low temperature CVD growth of PbS films on plastic substrates. Chemical Communications, 2011, 47, 1991.	2.2	41
195	Synthesis of pyrite thin films and transition metal doped pyrite thin films by aerosol-assisted chemical vapour deposition. New Journal of Chemistry, 2015, 39, 1013-1021.	1.4	41
196	Synthetic routes to iron chalcogenide nanoparticles and thin films. Dalton Transactions, 2016, 45, 18803-18812.	1.6	41
197	New synthetic routes for quantum dots. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2003, 361, 297-310.	1.6	40
198	Electronic properties of the interface between p-Cul and anatase-phase n-TiO2 single crystal and nanoparticulate surfaces: A photoemission study. Journal of Chemical Physics, 2007, 127, 114703.	1.2	40

#	Article	IF	CITATIONS
199	Simple Route to Dots and Rods of PbTe Nanocrystals. Chemistry of Materials, 2010, 22, 3817-3819.	3.2	40
200	MoS ₂ nanosheet production by the direct exfoliation of molybdenite minerals from several type-localities. RSC Advances, 2014, 4, 35609-35613.	1.7	40
201	Developing Chemical Strategies for the Assembly of Nanoparticles into Mesoscopic Objects. Journal of the American Chemical Society, 2010, 132, 1780-1781.	6.6	39
202	The aerosol assisted chemical vapour deposition of SnSe and Cu ₂ SnSe ₃ thin films from molecular precursors. Chemical Communications, 2014, 50, 14328-14330.	2.2	39
203	Novel Xanthate Complexes for the Size-Controlled Synthesis of Copper Sulfide Nanorods. Inorganic Chemistry, 2017, 56, 9247-9254.	1.9	39
204	The isomers of α-amino-acids with copper(II). Part 5. The cis and trans isomers of bis(glycinato)copper(II), and their novel thermal isomerization. Journal of the Chemical Society Dalton Transactions, 1979, , 1301-1305.	1.1	38
205	The synthesis of Ill–V semiconductor nanoparticles using indium and gallium diorganophosphides as single-molecular precursors. Journal of Materials Chemistry, 2004, 14, 629-636.	6.7	38
206	A facile method for the production of SnS thin films from melt reactions. Journal of Materials Science, 2016, 51, 6166-6172.	1.7	38
207	A general route to nanodimensional powders of indium chalcogenides. Journal of Materials Chemistry, 2006, 16, 2082.	6.7	37
208	Deposition of CdS and ZnS thin films at the water/toluene interface. Journal of Materials Chemistry, 2007, 17, 1381.	6.7	37
209	Understanding the Decomposition Pathways of Mixed Sulfur/Selenium Lead Phosphinato Complexes Explaining the Formation of Lead Selenide. Journal of Physical Chemistry C, 2011, 115, 16904-16909.	1.5	37
210	Passivation of lanthanide surface sites in sub-10Ânm NaYF4:Eu3+ nanocrystals. Journal of Nanoparticle Research, 2012, 14, 1228.	0.8	37
211	Multicolor light emitters based on energy exchange between Tb and Eu ions co-doped into ultrasmall β-NaYF4 nanocrystals. Journal of Materials Chemistry, 2012, 22, 5356.	6.7	37
212	Structural Diversity in the Carbamato Chemistry of Zinc: X-ray Single-Crystal Structures of [(Me2NCH2)2Zn(O2CN(C2H5)2)2] and [C5H5NZn2Me(O2CN(C2H5)2)3]. Inorganic Chemistry, 1995, 34, 6223-6225.	1.9	36
213	Imino-bis(diisopropylphosphine chalcogenide) complexes of arsenic, antimony and bismuth. Synthesis, CVD studies and X-ray structure of M[N(EPiPr2)2]n (E = Se, S; M = As, Sb, Bi)Dedicated to the memory of Professor Noel McAuliffe Dalton Transactions, 2003, , 1500-1504.	1.6	36
214	Deposition of hierarchical Cd(OH)2 anisotropic nanostructures at the water–toluene interface and their use as sacrificial templates for CdO or CdS nanostructures. Chemical Communications, 2008, , 2768.	2.2	36
215	Deposition of iron sulfide thin films by AACVD from single source precursors. Journal of Crystal Growth, 2012, 346, 106-112.	0.7	36
216	Studies of the kinetics of the reduction of chromate by glutathione and related thiols. Polyhedron, 1992, 11, 3211-3216.	1.0	35

#	Article	IF	CITATIONS
217	Developing environmentally benign routes for semiconductor synthesis: improved approaches to the solution deposition of cadmium sulfide for solar cell applications. Green Chemistry, 2000, 2, 79-86.	4.6	35
218	Studies of Molybdenum Disulfide Nanostructures Prepared by AACVD Using Single-Source Precursors. Chemical Vapor Deposition, 2006, 12, 597-599.	1.4	35
219	The synthesis of iron sulfide nanocrystals from tris(O-alkylxanthato)iron(iii) complexes. Journal of Materials Chemistry A, 2013, 1, 8766.	5.2	35
220	Nanoparticle–sulphur "inverse vulcanisation―polymer composites. Chemical Communications, 2015, 51, 10467-10470.	2.2	35
221	On the stability of surfactant-stabilised few-layer black phosphorus in aqueous media. RSC Advances, 2016, 6, 86955-86958.	1.7	35
222	X-Ray crystal structure of a triazine adduct of dimethylzinc: an important precursor for the deposition of II/VI materials. Journal of Materials Chemistry, 1991, 1, 139.	6.7	34
223	Silica coated PbS nanowires. Journal of Materials Chemistry, 2006, 16, 1113.	6.7	34
224	Deposition of copper selenide thin films and nanoparticles. Journal of Crystal Growth, 2006, 297, 61-65.	0.7	34
225	Morphological Evolution of PbSe Crystals via the CVD Route. Chemistry of Materials, 2010, 22, 4619-4624.	3.2	34
226	A facile solid phase reaction to prepare TiO2 mesocrystals with exposed {001} facets and high photocatalytic activity. CrystEngComm, 2013, 15, 5012.	1.3	34
227	The synthesis of cadmium phosphide nanoparticles using cadmium diorganophosphide precursors. Journal of Materials Chemistry, 1999, 9, 243-247.	6.7	33
228	Single-Source Routes to Cobalt Sulfide and Manganese Sulfide Thin Films. Chemical Vapor Deposition, 2005, 11, 91-94.	1.4	33
229	A novel soft hydrothermal (SHY) route to crystalline PbS and CdS nanoparticles exhibiting diverse morphologies. Chemical Communications, 2006, , 4709.	2.2	33
230	Updating the road map to metal-halide perovskites for photovoltaics. Journal of Materials Chemistry A, 2017, 5, 17135-17150.	5.2	33
231	A new route to nanorods of cadmium sulfide. Chemical Communications, 2005, , 2817.	2.2	32
232	On the use of zinc acetate as a novel precursor for the deposition of ZnO by low-pressure metal-organic chemical vapour deposition. Thin Solid Films, 1989, 173, 95-97.	0.8	31
233	Mechanisms in the reduction of chromium(VI) with glutathione. Inorganica Chimica Acta, 1989, 161, 261-266.	1.2	31
234	On the synthesis and manipulation of InAs quantum dots. Journal of Materials Chemistry, 2000, 10, 1939-1943.	6.7	31

#	Article	IF	CITATIONS
235	The CVD of silver sulfide and silver thin films from a homoleptic crystalline single-source precursor. Journal of Materials Chemistry, 2008, 18, 3264.	6.7	31
236	Synthesis of chalcopyrite-type and thiospinel minerals/materials by low temperature melts of xanthates. Dalton Transactions, 2018, 47, 8870-8873.	1.6	31
237	The growth of CdS, CdSe and CdSSe alloys by MOCVD using dimethylcadmium dioxan adducts. Journal of Crystal Growth, 1989, 94, 97-101.	0.7	30
238	Deposition of cadmium sulphide thin films from the single-source precursor bis(diethylmonothiocarbamato)cadmium(II) by low-pressure metalorganic chemical vapour deposition. Advanced Materials for Optics and Electronics, 1997, 7, 311-316.	0.5	30
239	Organomercury-based imino-bis(diisopropylphosphine chalcogenide) complexes: synthesis and characterisation of novel hybrid "single-source precursors―for mercury chalcogenide solid-state materials. Dalton Transactions, 2003, , 2761-2766.	1.6	30
240	Aerosol-assisted metallo-organic chemical vapour deposition of Bi2Se3 films using single-molecule precursors. The crystal structure of bismuth(iii) dibutyldiselenocarbamate. Journal of Materials Chemistry, 2003, 13, 3006.	6.7	30
241	N,N′-Diisopropyl- and N,N′-dicyclohexylthiourea cadmium(II) complexes as precursors for the synthesis of CdS nanoparticles. Polyhedron, 2007, 26, 3947-3955.	1.0	30
242	Influence of Seeding Layers on the Morphology, Density, and Critical Dimensions of ZnO Nanostructures Grown by Chemical Bath Deposition. Journal of Physical Chemistry C, 2012, 116, 8089-8094.	1.5	30
243	Ultrafast Charge Dynamics in Trapâ€Free and Surfaceâ€Trapping Colloidal Quantum Dots. Advanced Science, 2015, 2, 1500088.	5.6	30
244	Ultrafast Charge Dynamics in Dispersions of Monolayer MoS ₂ Nanosheets. Journal of Physical Chemistry C, 2017, 121, 22415-22421.	1.5	30
245	The growth of CdS and CdSe alloys by MOCVD using a new dimethylcadmium adduct. Journal of Crystal Growth, 1989, 97, 537-541.	0.7	29
246	Nickel Sulfide Thin Films from Thio- and Dithiobiuret Precursors. Chemistry of Materials, 2010, 22, 6328-6340.	3.2	29
247	Special Role for Zinc Stearate and Octadecene in the Synthesis of Luminescent ZnSe Nanocrystals. Chemistry of Materials, 2015, 27, 3797-3800.	3.2	29
248	Impact of immunopathology on the antituberculous activity of pyrazinamide. Journal of Experimental Medicine, 2018, 215, 1975-1986.	4.2	29
249	Synthesis and characterization of some chromium(III) complexes with glutathione. Journal of the Chemical Society Dalton Transactions, 1985, , 2085.	1.1	28
250	Metal-organic chemical vapor deposition of indium selenide films using a single-source precursor. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 116, 391-394.	1.7	28
251	A general route to nanostructured bismuth chalcogenides. Journal of Materials Chemistry, 2005, 15, 3021.	6.7	28
252	Synthesis and assembly of Bi2S3 nanoparticles at the water–toluene interface. Chemical Physics Letters, 2008, 465, 110-114.	1.2	28

#	Article	IF	CITATIONS
253	Synthesis of multi-podal CdS nanostructures using heterocyclic dithiocarbamato complexes as precursors. Polyhedron, 2013, 56, 62-70.	1.0	28
254	The syntheses and structures of Zn(II) heterocyclic piperidine and tetrahydroquinoline dithiocarbamates and their use as single source precursors for ZnS nanoparticles. Polyhedron, 2014, 67, 129-135.	1.0	28
255	Single-Source Precursor for Tungsten Dichalcogenide Thin Films: Mo _{1–<i>x</i>} W _{<i>x</i>} S ₂ (0 ≤i>x ≤) Alloys by Aerosol-Assisted Chemical Vapor Deposition. Chemistry of Materials, 2017, 29, 3858-3862.	3.2	28
256	Black phosphorus with near-superhydrophobic properties and long-term stability in aqueous media. Chemical Communications, 2018, 54, 3831-3834.	2.2	28
257	A molecular precursor route to quaternary chalcogenide CFTS (Cu2FeSnS4) powders as potential solar absorber materials. RSC Advances, 2019, 9, 24146-24153.	1.7	28
258	On the use of basic zinc acetate Zn4O(CH3CO2)6 as a novel precursor for the deposition of ZnO by low-pressure metallo organic chemical vapour deposition: their characterization by low energy electron induced X-ray emission spectroscopy. Thin Solid Films, 1989, 182, L1-L4.	0.8	27
259	Some complexes of neopentylcadmium species with dithio-and di-selenocarbamates: The synthesis, characterization and single crystal X-ray structure of a mixed neopentyl/diethyldiselenocarbamate of cadmium: [(CH3)3CCH2CdSe2CNEt2]2. Journal of Organometallic Chemistry, 1994, 465, 73-77.	0.8	27
260	Nickel(ii) complexes of heterodichalcogenido and monochalcogenido imidodiphosphinate ligands: AACVD synthesis of nickel ditelluride. Dalton Transactions, 2008, , 7004.	1.6	27
261	Towards quantitatively reproducible substrates for SERS. Analyst, The, 2008, 133, 1449.	1.7	27
262	Deposition of iron selenide nanocrystals and thin films from tris(N,N-diethyl-N′-naphthoylselenoureato)iron(iii). Journal of Materials Chemistry, 2012, 22, 14970.	6.7	27
263	Synthesis of monodispersed magnetite nanoparticles from iron pivalate clusters. Dalton Transactions, 2013, 42, 196-206.	1.6	27
264	Facile synthesis of a PbS _{1â^'x} Se _x (0 ≤i>x ≤) solid solution using bis(<i>N</i> N-diethyl- <i>N</i> â€2-naphthoylchalcogenoureato)lead(<scp>ii</scp>) complexes. New Journal of Chemistry, 2018, 42, 16602-16607.	1.4	27
265	iso-Propylthiobiuret-copper and indium complexes as novel precursors for colloidal synthesis of CuInS2 nanoparticles. Journal of Materials Chemistry, 2012, 22, 3781.	6.7	26
266	Effect of Chloride Passivation on Recombination Dynamics in CdTe Colloidal Quantum Dots. ChemPhysChem, 2015, 16, 1239-1244.	1.0	26
267	Aerosol assisted chemical vapor deposition (AACVD) of CdS thin films from heterocyclic cadmium(II) complexes. Inorganica Chimica Acta, 2015, 434, 181-187.	1.2	26
268	A kinetic and equilibrium study of the reaction of glycine with chromium(III) in aqueous solution. Journal of the Chemical Society Dalton Transactions, 1984, , 1647.	1.1	25
269	Defining conditions for the efficient in vitro cross-linking of proteins to DNA by chromium(III) compounds. Carcinogenesis, 1992, 13, 307-308.	1.3	25
270	X-ray crystal structures and thermal behaviour of two volatile bis(1,1,1,5,5,5-hexafluoropentane-2,4-dionato)barium-(azapolyether) complexes. Polyhedron, 1996, 15, 1865-1875.	1.0	25

#	Article	IF	CITATIONS
271	Deposition of Thin Films of Gallium Sulfide from a Novel Liquid Single-Source Precursor, Ga(SOCNEt2)3, by Aerosol-Assisted CVD. Chemical Vapor Deposition, 1999, 5, 203-205.	1.4	25
272	The use of dithio- and diselenocarbamates as precursors to nanoscale materials. Materials Science and Engineering C, 2001, 16, 129-133.	3.8	25
273	Precursor Routes to Semiconductor Quantum Dots. Phosphorus, Sulfur and Silicon and the Related Elements, 2005, 180, 689-712.	0.8	25
274	Arene Chalcogenolato Complexes of Zinc and Cadmium. Inorganic Syntheses, 2007, , 19-24.	0.3	25
275	Selective Deposition of Cobalt Sulfide Nanostructured Thin Films from Single-Source Precursors. Chemistry of Materials, 2010, 22, 4919-4930.	3.2	25
276	The poly(ethylene glycol) assisted preparation of NH4TiOF3 mesocrystals and their topotactic conversion to TiO2. Journal of Materials Chemistry, 2012, 22, 25123.	6.7	25
277	Synthesis of iron selenide nanocrystals and thin films from bis(tetraisopropyldiselenoimidodiphosphinato)iron(<scp>ii</scp>) and bis(tetraphenyldiselenoimidodiphosphinato)iron(<scp>ii</scp>) complexes. Journal of Materials Chemistry A. 2014. 2. 20612-20620.	5.2	25
278	The AACVD of Cu ₂ FeSn(S _x Se _{1â^'x}) ₄ : potential environmentally benign solar cell materials. New Journal of Chemistry, 2015, 39, 7046-7053.	1.4	25
279	The synthesis and characterization of Cu2ZnSnS4 thin films from melt reactions using xanthate precursors. Journal of Materials Science, 2017, 52, 12761-12771.	1.7	25
280	The deposition of thin films of cadmium zinc sulfide Cd1â^'x Zn x S at 250°C from spin-coated xanthato complexes: a potential route to window layers for photovoltaic cells. Journal of Materials Science, 2018, 53, 4360-4370.	1.7	25
281	Unusual products from carbon dioxide insertion reactions into group 12 alkyls–alkylamides: the X-ray structure of a tetrameric alkylzinc carbamate [Me2Zn4(O2CNEt2)6]. Journal of the Chemical Society Chemical Communications, 1991, , 1690-1691.	2.0	24
282	Control of Growth Dynamics by Molecular Design in the MOCVD of Electronic Ceramics. Materials Research Society Symposia Proceedings, 1997, 495, 11.	0.1	24
283	Variable Coordination Modes in Dialkyldithiophosphinato Complexes of Group 13 Metals:Â The X-ray Single Crystal Structures of Tris(diisobutyldithiophosphinato)gallium(III) and -indium(III). Inorganic Chemistry, 2001, 40, 3629-3631.	1.9	24
284	The synthesis of HgS nanoparticles in polystyrene matrix. Journal of Materials Chemistry, 2004, 14, 581.	6.7	24
285	Electrodeposition of mesoporous CdTe films with the aid of citric acid from lyotropic liquid crystalline phases. Journal of Materials Chemistry, 2006, 16, 3207.	6.7	24
286	Aerosol assisted chemical vapor deposition of Sb2S3 thin films: Environmentally benign solar energy material. Materials Science in Semiconductor Processing, 2015, 40, 643-649.	1.9	24
287	Multiple Exciton Generation and Dynamics in InP/CdS Colloidal Quantum Dots. Journal of Physical Chemistry C, 2017, 121, 2099-2107.	1.5	24
288	Chemical vapor deposition of tin sulfide from diorganotin(IV) dixanthates. Journal of Materials Science, 2019, 54, 2315-2323.	1.7	24

Paul O'brien

#	Article	IF	CITATIONS
289	The preparation, reactivity, and crystal structure of a 1 : 1 adduct of dimethylzinc and (â^')-sparteine. Journal of Organometallic Chemistry, 1993, 461, 5-7.	0.8	23
290	The synthesis and characterisation of tris(N, N ′-diethylmonothiocarbamato)indium(III) [In(SOCNEt2)3] and diethyl(N, N ′-diethylmonothiocarbamato)indium(III) [Et2In(SOCNEt2)]n: potential precursors for the growth of indium sulfide by low pressure metal organic chemical vapour deposition. Journal of the Chemical Society Dalton Transactions, 1998, , 4205-4210.	1.1	23
291	A novel method for the synthesis of the ternary thin film semiconductor cadmium zinc sulfide from acidic chemical baths. Journal of Materials Chemistry, 2000, 10, 2439-2441.	6.7	23
292	Field-independent grating formation rate in a photorefractive polymer composite sensitized by CdSe quantum dots. Journal of Chemical Physics, 2002, 117, 7335-7341.	1.2	23
293	Metal-organic chemical vapor deposition of \hat{l}^2 -In2S3 thin films using a single-source approach. Journal of Materials Science: Materials in Electronics, 2003, 14, 555-557.	1.1	23
294	N-alkylthioureacadmium (II) complexes as novel precursors for the synthesis of CdS nanoparticles. Journal of Materials Science: Materials in Electronics, 2004, 15, 313-316.	1.1	23
295	A novel single source precursor: [bis(N,N-diethyl-N′-naphthoyl-selenoureato)palladium(<scp>ii</scp>)] for palladium selenide thin films and nanoparticles. Chemical Communications, 2011, 47, 1899-1901.	2.2	23
296	Deposition of binary, ternary and quaternary metal selenide thin films from diisopropyldiselenophosphinato-metal precursors. Journal of Crystal Growth, 2014, 394, 39-48.	0.7	23
297	The deposition of PbS and PbSe thin films from lead dichalcogenoimidophosphinates by AACVD. Inorganica Chimica Acta, 2016, 453, 439-442.	1.2	23
298	Dual Functionalization of Liquidâ€Exfoliated Semiconducting 2 <i>Hâ€</i> MoS ₂ with Lanthanide Complexes Bearing Magnetic and Luminescence Properties. Advanced Functional Materials, 2017, 27, 1703646.	7.8	23
299	Synthesis of Bi _{2â^'2x} Sb _{2x} S ₃ (0 ≤i>x ≤) solid solutions from solventless thermolysis of metal xanthate precursors. Journal of Materials Chemistry C, 2018, 6, 12652-12659.	2.7	23
300	Photochemical studies of the MoVI citric acid complex Mo2O5OH(H2O)(C6H5O7)2â^'. Transition Metal Chemistry, 1983, 8, 193-195.	0.7	22
301	Extended X-ray absorption fine structure studies of the role of chromium in leather tanning. Polyhedron, 2001, 20, 461-466.	1.0	22
302	Modelling the formation of granules: the influence of manganese ions on calcium pyrophosphate precipitates. Inorganica Chimica Acta, 2002, 339, 366-372.	1.2	22
303	A new synthesis of InAs quantum dots from [tBu2AsInEt2]2. Journal of Materials Chemistry, 2005, 15, 1463.	6.7	22
304	Cadmium Sulfide and Cadmium Phosphide Thin Films from a Single Cadmium Compound. Inorganic Chemistry, 2011, 50, 2052-2054.	1.9	22
305	Morphologyâ€Tailored Synthesis of PbSe Nanocrystals and Thin Films from Bis[<i>N</i> , <i>N</i> ,a€diisobutylâ€ <i>N′</i> â€(4â€nitrobenzoyl)selenoureato]lead(II). European Journal of Inorganic Chemistry, 2011, 2011, 2984-2990.	1.0	22
306	Semiconducting nanostructured copper sulfide thin films from bidentate copper(ii) complexes of N-(dialkylcarbamothioyl)-nitrosubstituted benzamides by chemical vapour deposition. New Journal of Chemistry, 2013, 37, 3214.	1.4	22

#	Article	IF	CITATIONS
307	The effect of the chelating agent EDTA on the rate of uptake of zinc by Palaemon elegans (Crustacea:) Tj ETQq1	1	4 ṟṟƁBT /Ove
308	Deposition of tetragonal β-In2S3 thin films from tris(N,N-diisopropylmonothiocarbamato)indium(III), In(SOCNiPr2)3, by low pressure metal-organic chemical vapour deposition. Journal of Materials Chemistry, 1999, 9, 1289-1292.	6.7	21
309	Crystal structure of a strontium–tantalum and a magnesium–niobium heterometal alkoxide: precursors for the MOCVD of ferroelectric oxides. Journal of Materials Chemistry, 2001, 11, 544-548.	6.7	21
310	The X-ray single crystal structure of [Me2In(acac)]2 and its use as a single-source precursor for the deposition of indium oxide thin films. Journal of Materials Chemistry, 2001, 11, 2346-2349.	6.7	21
311	Title is missing!. Journal of Materials Science: Materials in Electronics, 2003, 14, 599-602.	1.1	21
312	Photorefractive performance of a CdSeâ^•ZnS core/shell nanoparticle-sensitized polymer. Journal of Chemical Physics, 2005, 122, 184713.	1.2	21
313	Factors controlling material deposition in the CVD of nickel sulfides, selenides or phosphides from dichalcogenoimidodiphosphinato complexes: deposition, spectroscopic and computational studies. Dalton Transactions, 2010, 39, 6080.	1.6	21
314	Thin films of metals, metal chalcogenides and oxides deposited at the water–oil interface using molecular precursors. Chemical Communications, 2013, 49, 118-127.	2.2	21
315	A direct synthesis of water soluble monodisperse cobalt and manganese ferrite nanoparticles from iron based pivalate clusters by the hot injection thermolysis method. Materials Science in Semiconductor Processing, 2014, 27, 303-308.	1.9	21
316	AACVD of Molybdenum Sulfide and Oxide Thin Films From Molybdenum(V)â€based Singleâ€source Precursors ^{**} . Chemical Vapor Deposition, 2015, 21, 71-77.	1.4	21
317	High Systemic Exposure of Pyrazinoic Acid Has Limited Antituberculosis Activity in Murine and Rabbit Models of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2016, 60, 4197-4205.	1.4	21
318	New Examples of Phase Control in the Preparation of Copper Sulfide Nanoparticles and Deposition of Thin Films by AACVD from Bis(piperidinedithiocarbamato)copper(II) Complex. ChemistrySelect, 2018, 3, 2943-2950.	0.7	21
319	Synthesis of nanostructured powders and thin films of iron sulfide from molecular precursors. RSC Advances, 2018, 8, 29096-29103.	1.7	21
320	Isomers of ?-amino acids with copper(II). Part VI. Novel equilibria at high pH in copper(II):Amino-acid solutions. Transition Metal Chemistry, 1980, 5, 340-345.	0.7	20
321	The synthesis and characterization of cadmium and zinc complexes with dithiocarbamate derivatives of diamines. Polyhedron, 1993, 12, 1533-1538.	1.0	20
322	Synthesis and characterization of some mixed alkyl–carbamates of zinc or cadmium: crystal structures of [Zn4Me2(O2CNEt2)6] and [Zn4Me4(O2CNEt2)4]. Journal of the Chemical Society Dalton Transactions, 1995, , 1043-1046.	1.1	20
323	Evidence for the chemical nature of capping in CdSe nanoparticles prepared by thermolysis in tri-n-octylphosphine oxide from P-edge EXAFS spectroscopy. Journal of Materials Chemistry, 2001, 11, 2542-2544.	6.7	20
324	Continuous Flow Supercritical Chemical Fluid Deposition of Optoelectronic Quality CdS. Advanced Materials, 2009, 21, 4115-4119.	11.1	20

#	Article	IF	CITATIONS
325	Dynamics in next-generation solar cells: time-resolved surface photovoltage measurements of quantum dots chemically linked to ZnO (101̄0). Faraday Discussions, 2014, 171, 275-298.	1.6	20
326	Studies of the binding of chromium(III) complexes to phosphate groups of adenosine triphosphate. Carcinogenesis, 1991, 12, 921-926.	1.3	19
327	Effect of nanoparticle composition on the performance of photorefractive polymers. Chemical Physics, 2007, 334, 45-52.	0.9	19
328	Nanoparticles and Thin Films of Silver from Complexes of Derivatives of N-(Diisopropylthiophosphoryl)thioureas. Chemistry of Materials, 2009, 21, 4233-4240.	3.2	19
329	Lead chalcogenides stabilized by anacardic acid. Materials Science in Semiconductor Processing, 2013, 16, 263-268.	1.9	19
330	Colloidal Synthesis of ZnS, CdS and Zn x Cd1â^'x S Nanoparticles from Zinc and Cadmium Thiobiuret Complexes. Journal of Inorganic and Organometallic Polymers and Materials, 2014, 24, 226-240.	1.9	19
331	Reducing hole transporter use and increasing perovskite solar cell stability with dual-role polystyrene microgel particles. Nanoscale, 2017, 9, 10126-10137.	2.8	19
332	A chromium(III) complex of oxidised glutathione isolated from the reduction of chromium(VI) with glutathione. Inorganica Chimica Acta, 1989, 166, 301-304.	1.2	18
333	Chemical models important in understanding the ways in which chromate can damage DNA Environmental Health Perspectives, 1994, 102, 3-10.	2.8	18
334	Nuclear Magnetic Resonance (NMR) Study of Cd2+ Sorption on Montmorillonite. Clays and Clay Minerals, 1999, 47, 761-768.	0.6	18
335	The Aerosolâ€Assisted CVD of Silver Films from Single ource Precursors. Chemical Vapor Deposition, 2009, 15, 57-63.	1.4	18
336	Homoleptic single molecular precursors for the deposition of platinum and palladium chalcogenide thin films. Thin Solid Films, 2010, 519, 197-202.	0.8	18
337	The influence of precursor on rhenium incorporation into Re-doped MoS ₂ (Mo _{1â^'x} Re _x S ₂) thin films by aerosol-assisted chemical vapour deposition (AACVD). Journal of Materials Chemistry C, 2017, 5, 9044-9052.	2.7	18
338	Synthesis and crystal structures of three new strontium β-diketonate complexes: [Sr(tmhd)2(iPrOH)4], [Sr2(tmhd)4(dmaeH)2(μ2-dmaeH)2] and [Sr4(tmod)8]. Polyhedron, 2001, 20, 2397-2403.	1.0	17
339	Thermodynamic and kinetic control of crystal growth in CdS nanomaterials. Journal of Materials Chemistry, 2008, 18, 1689.	6.7	17
340	Cadmium thiosemicarbazide complexes as precursors for the synthesis of nanodimensional crystals of CdS. Polyhedron, 2009, 28, 2097-2102.	1.0	17
341	Synthesis of SnO2 nanostructures by ultrasonic-assisted sol–gel method. Journal of Sol-Gel Science and Technology, 2014, 69, 617-624.	1.1	17
342	Chemically-specific time-resolved surface photovoltage spectroscopy: Carrier dynamics at the interface of quantum dots attached to a metal oxide. Surface Science, 2015, 641, 320-325.	0.8	17

#	Article	IF	CITATIONS
343	Synthesis of Nanoparticulate Alloys of the Composition Cu ₂ Zn _{1–<i>x</i>} Fe _{<i>x</i>} SnS ₄ : Structural, Optical, and Magnetic Properties. Journal of the American Chemical Society, 2015, 137, 15086-15089.	6.6	17
344	Symmetrical and unsymmetrical nickel(II) complexes of N-(dialkylcarbamothioyl)-nitro substituted benzamide as single-source precursors for deposition of nickel sulfide nanostructured thin films by AACVD. Polyhedron, 2015, 85, 267-274.	1.0	17
345	Heterocyclic lead(II) thioureato complexes as single-source precursors for the aerosol assisted chemical vapour deposition of PbS thin films. Inorganica Chimica Acta, 2018, 479, 42-48.	1.2	17
346	Deposition of Bi2S3 thin films from heterocyclic bismuth(III) dithiocarbamato complexes. Polyhedron, 2018, 154, 173-181.	1.0	17
347	The crystal and molecular structure of bis[2-((dimethylamino)methyl)phenyl]cadmium(II). Journal of Organometallic Chemistry, 1987, 334, C27-C30.	0.8	16
348	A potentially significant one-electron pathway in the reduction of chromate by glutathione under physiological conditions. Journal of the Chemical Society Chemical Communications, 1992, , 690.	2.0	16
349	Adducts of methyizinc tert-butylthiolate and nitrogenous bases: implications for the use of adducts in MOCVD. Journal of Materials Chemistry, 1995, 5, 731.	6.7	16
350	Novel wet-chemical routes to nano- and microstructured semiconductor layers for improved efficiency photovoltaic devices. Thin Solid Films, 2003, 431-432, 483-487.	0.8	16
351	Developing cadmium-free window layers for solar cell applications: some factors controlling the growth and morphology of β-indium sulfide thin films and related (In,Zn)S ternaries. Journal of Materials Chemistry, 2003, 13, 2242-2247.	6.7	16
352	Metal Complexes of 4â€Aminoâ€Nâ€(2â€pyrimidinyl)benzene Sulfonamide: Synthesis, Characterization and Antiprotozoal Studies. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2007, 37, 653-659.	0.6	16
353	Facile Deposition of Nanodimensional Ceria Particles and Their Assembly into Conformal Films at Liquidâ^'Liquid Interface with a Phase Transfer Catalyst. Journal of the American Chemical Society, 2009, 131, 6072-6073.	6.6	16
354	The synthesis and structure of a cadmium complex of dimorpholinodithioacetylacetonate and its use as single source precursor for CdS thin films or nanorods. Dalton Transactions, 2009, , 2196.	1.6	16
355	The influence of the cadmium source on the shape of CdSe nanoparticles. Materials Letters, 2010, 64, 1037-1040.	1.3	16
356	Single-molecule precursor-based approaches to cobalt sulphide nanostructures. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 4249-4260.	1.6	16
357	Nickel(II) complexes of <i>N</i> -(dialkylcarbamothioyl)-4-nitrobenzamide as single-source precursors for the deposition of nanostructured nickel sulfide thin films by chemical vapor deposition. Journal of Coordination Chemistry, 2013, 66, 2788-2801.	0.8	16
358	Determination of Internal Structures of Heterogeneous Nanocrystals Using Variable-Energy Photoemission Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 15534-15540.	1.5	16
359	CH ₃ NH ₃ PbI ₃ films prepared by combining 1- and 2-step deposition: how crystal growth conditions affect properties. Physical Chemistry Chemical Physics, 2017, 19, 7204-7214.	1.3	16
360	On the phase control of CuInS ₂ nanoparticles from Cu-/In-xanthates. Dalton Transactions, 2018, 47, 5304-5309.	1.6	16

#	Article	IF	CITATIONS
361	Metal–organic chemical vapour deposition of lead scandium tantalate: chemical issues and precursor selection. Polyhedron, 2000, 19, 351-355.	1.0	15
362	CdSe/CdS core/shell quantum dots as sensitizer of a photorefractive polymer composite. Journal of Modern Optics, 2003, 50, 299-310.	0.6	15
363	Formation of Spherical Granules of Calcium Pyrophosphate. Crystal Growth and Design, 2003, 3, 431-434.	1.4	15
364	Synthesis and characterization of CdS quantum dots in polystyrene microbeads. Journal of Materials Chemistry, 2005, , .	6.7	15
365	A Simple Numerical Calculation Correctly Predicts the Observed Size Regime for Growth of Tetrapodal Chalcogenide Nanocrystals. Journal of the American Chemical Society, 2006, 128, 5614-5615.	6.6	15
366	Tantalum(v) diethylamide, [Ta(NEt2)5]: a potentially important and crystalline precursor for the CVD of oxides containing tantalum. Journal of Materials Chemistry, 2006, 16, 2226.	6.7	15
367	Isostructural cage complexes of copper with cadmium or zinc for single source deposition of composite materials. New Journal of Chemistry, 2009, 33, 2241.	1.4	15
368	Ternary cadmium zinc sulphide films with high charge mobilities. Solid State Sciences, 2015, 40, 50-54.	1.5	15
369	Property Self-Optimization During Wear of MoS ₂ . ACS Applied Materials & Interfaces, 2017, 9, 1953-1958.	4.0	15
370	PbS x Se1â^'x thin films from the thermal decomposition of lead(II) dodecylxanthate and bis(N,N-diethyl-Nâ€2-naphthoylselenoureato)lead(II) precursors. Journal of Materials Science, 2018, 53, 4283-4293.	1.7	15
371	The isomers of α-amino-acids with copper(II). Part 4. Catalysis of the racemization of optically active alanine by copper(II) and pyruvate in alkaline solution. Journal of the Chemical Society Dalton Transactions, 1978, , 1444-1447.	1.1	14
372	Reactivity of co-ordination compounds in the solid state. Part 1. Mixed-ligand complexes of oxalate and 2,2′-bipyridlyl with copper(II), their preparation, interconversion, and novel solid-state reactivity. Journal of the Chemical Society Dalton Transactions, 1981, , 1540-1543.	1.1	14
373	Kinetics of the thermal decomposition of cobaltic acid, CoO(OH). Journal of the Chemical Society Dalton Transactions, 1982, , 1407.	1.1	14
374	Chromium(V) complexes can generate hydroxyl radicals. Inorganica Chimica Acta, 1989, 162, 27-28.	1.2	14
375	The use of dimethylzinc-amine adducts for the p-doping of InP and related alloys. Journal of Crystal Growth, 1993, 130, 295-299.	0.7	14
376	Title is missing!. Journal of Materials Science: Materials in Electronics, 2003, 14, 579-582.	1.1	14
377	Analysis of metal-containing granules in the barnacle Tetraclita squamosa. Journal of Inorganic Biochemistry, 2004, 98, 1095-1102.	1.5	14
378	The LP-MOCVD of CdS/Bi2S3 bilayers using single-molecule precursors. Materials Letters, 2004, 58, 119-122.	1.3	14

#	Article	IF	CITATIONS
379	Synthesis and characterization of Ni(II), Pd(II) and Pt(II) complexes of 2,4-diamino-5-(3, 4,) Tj ETQq1 1 0.784314	rgBT/Ove	erlock 10 Tf 5
380	The adoption of the beryllium acetate structural motif in zinc oxycarbamates, oxythiocarbamates and oxythiophosphinates. Polyhedron, 2006, 25, 241-250.	1.0	14
381	Ammonium oxotrifluorotitanate: morphology control and conversion to anatase TiO ₂ . Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 2317-2323.	0.8	14
382	Highly sensitive, selective and stable multi-metal ions sensor based on ibuprofen capped mercury nanoparticles. Sensors and Actuators B: Chemical, 2012, 173, 745-751.	4.0	14
383	Hot injection thermolysis of heterometallic pivalate clusters for the synthesis of monodisperse zinc and nickel ferrite nanoparticles. Journal of Materials Chemistry C, 2014, 2, 6781-6789.	2.7	14
384	High magnetic relaxivity in a fluorescent CdSe/CdS/ZnS quantum dot functionalized with MRI contrast molecules. Chemical Communications, 2017, 53, 10500-10503.	2.2	14
385	CdS thin films deposition by AACVD: effect of precursor type, decomposition temperature and solvent. Journal of Materials Science: Materials in Electronics, 2018, 29, 14462-14470.	1.1	14
386	Synthesis of (Bi _{1â~'x} Sb _x) ₂ S ₃ solid solutions <i>via</i> thermal decomposition of bismuth and antimony piperidinedithiocarbamates. RSC Advances, 2019, 9, 15836-15844.	1.7	14
387	The use of an adduct in improved syntheses of nanoparticulate chalcogenide semiconductors containing cadmium. Advanced Materials for Optics and Electronics, 1997, 7, 277-279.	0.5	13
388	A study of impurities in some CdS/CdTe photovoltaic cells prepared by wetÂchemical methods using secondary ion mass spectrometry and Xâ€ray photoelectron spectroscopy. Journal of Materials Chemistry, 1999, 9, 2879-2883.	6.7	13
389	Iron Sulfide (FeS2) Thin Films From Single-Source Precursors by Aerosol-Assisted Chemical Vapor Deposition (AACVD). Materials Research Society Symposia Proceedings, 1999, 606, 133.	0.1	13
390	Single molecular precursor for synthesis of GaAs nanoparticles. Materials Science and Technology, 2004, 20, 959-963.	0.8	13
391	Synthesis and structure of a tantalum(V) tetrakis-O,O chelate: [Ta(tmhd)4][TaCl6]. Inorganic Chemistry Communication, 2005, 8, 585-587.	1.8	13
392	Co(II) and Cu(II) complexes of 2,4-diamino-5-(3,4,5-trimethoxybenzyl)pyrimidine. Journal of Coordination Chemistry, 2008, 61, 328-340.	0.8	13
393	Epitaxial CdTe Rods on Au/Si Islands from a Molecular Compound. Journal of the American Chemical Society, 2010, 132, 5964-5965.	6.6	13
394	Diatom Frustules as a Biomineralized Scaffold for the Growth of Molybdenum Disulfide Nanosheets. Chemistry of Materials, 2016, 28, 5582-5586.	3.2	13
395	The <i>in situ</i> synthesis of PbS nanocrystals from lead(II) <i>n</i> -octylxanthate within a 1,3-diisopropenylbenzene–bisphenol A dimethacrylate sulfur copolymer. Royal Society Open Science, 2017, 4, 170383.	1.1	13
396	The effect of temperature on the growth of Ag2O nanoparticles and thin films from bis(2-hydroxy-1-naphthaldehydato)silver(I) complex by the thermal decomposition of spin–coated films. Materials Science in Semiconductor Processing, 2017, 71, 109-115.	1.9	13

Paul O'brien

#	Article	IF	CITATIONS
397	A simple route to complex materials: the synthesis of alkaline earth – transition metal sulfides. Chemical Communications, 2017, 53, 10058-10061.	2.2	13
398	Air-Stable Methylammonium Lead Iodide Perovskite Thin Films Fabricated via Aerosol-Assisted Chemical Vapor Deposition from a Pseudohalide Pb(SCN) ₂ Precursor. ACS Applied Energy Materials, 2019, 2, 6012-6022.	2.5	13
399	Inoculum size and traits of the infecting clinical strain define the protection level against <i>Mycobacterium tuberculosis</i> infection in a rabbit model. European Journal of Immunology, 2020, 50, 858-872.	1.6	13
400	Scalable synthesis of Cu–Sb–S phases from reactive melts of metal xanthates and effect of cationic manipulation on structural and optical properties. Scientific Reports, 2021, 11, 1887.	1.6	13
401	Coordination chemistry and the carcinogenicity and mutagenicity of chromium(VI). Environmental Geochemistry and Health, 1989, 11, 77-85.	1.8	12
402	The preparation and structural characterisation of bis(N,N-diethylmonothiocarbamato)complexes of cadmium and of the novel tetrameric complex [Et4Zn4(OSCNEt2)2(NEt2)2]: two new bonding modes for the monothiocarbamato ligand. Journal of the Chemical Society Dalton Transactions, 1998, , 3839-3844.	1.1	12
403	Mixed ligand chelates of copper(II) with substituted diamines. Polyhedron, 2005, 24, 1101-1107.	1.0	12
404	The Use of Xanthates as Precursors for the Deposition of Nickel Sulfide Thin Films by Aerosol Assisted Chemical Vapour Deposition. Materials Research Society Symposia Proceedings, 2005, 879, 1.	0.1	12
405	Photorefractive performance of polymer composite sensitized by CdSe nanoparticles passivated by 1-hexadecylamine. Journal of Modern Optics, 2005, 52, 945-953.	0.6	12
406	Organometallic and Metallo-Organic Precursors for Nanoparticles. , 0, , 173-204.		12
407	Aerosol assisted chemical vapour deposition of Cu–ZnO composite from single source precursors. Dalton Transactions, 2009, , 5487.	1.6	12
408	Thiol-containing microspheres as polymeric ligands for the immobilisation of quantum dots. Journal of Materials Chemistry, 2009, 19, 215-221.	6.7	12
409	The synthesis, spectroscopy and X-ray single crystal structure of		

#	Article	IF	CITATIONS
415	Nanoparticles of Cu ₂ ZnSnS ₄ as performance enhancing additives for organic field-effect transistors. Journal of Materials Chemistry C, 2016, 4, 5109-5115.	2.7	11
416	Important Phase Control of Indium Sulfide Nanomaterials by Choice of Indium(III) Xanthate Precursor and Thermolysis Temperature. European Journal of Inorganic Chemistry, 2019, 2019, 1421-1432.	1.0	11
417	Novel mechanisms in the activation of L-alanine by copper(II). Journal of the Chemical Society Dalton Transactions, 1977, , 1988.	1.1	10
418	Complexes of copper(II) with oxalate and 2,2?-bipyridyl: Preparation and interconversion in the solid state. Transition Metal Chemistry, 1980, 5, 314-315.	0.7	10
419	Metal ion complexes of amino acids. Part II [1]. The copper complexes of the α- and β-isomers of N-oxalyl-L-α,β-diaminopropionic acid Inorganica Chimica Acta, 1982, 66, 185-188.	1.2	10
420	The preparation and characterization of bis(2,2-dimethylpropyl)cadmium(II) and its 2,2′-bipyridyl adduct. Polyhedron, 1990, 9, 1483-1485.	1.0	10
421	Chromium(V) species can be generated during the reaction of solid welding fume with solutions of glutathione. Polyhedron, 1993, 12, 1409-1410.	1.0	10
422	Nitrogen doping of ZnSe with trimethylsilylazide, triallylamine or bisditrimethylsilylamidozinc during metalorganic vapour phase epitaxy. Journal of Crystal Growth, 1996, 169, 243-249.	0.7	10
423	Some novel carbamato chemistry of cadmium and zinc. Inorganica Chimica Acta, 1998, 274, 239-242.	1.2	10
424	Synthesis and X-ray crystal structures of Schiff bases prepared from salicylaldehyde and the diamino acids L-2-amino-3-methylaminopropanoic acid, DL-2,4-diamino-butanoic acid and DL-2,3-diaminopropanoic acid. Tetrahedron, 1998, 54, 5721-5730.	1.0	10
425	Synthesis and X-ray single crystal structures of copper(I) complexes: Cu(S2PiBu2)·(PMe3)3 and Cu(S2PiBu2)·(PPh3)2. Inorganica Chimica Acta, 2002, 338, 245-248.	1.2	10
426	A Highly Luminescent ZnS/CdSe/ZnS Nanocrystals-Tetrapeptide Biolabeling Agent. Journal of Nanoscience and Nanotechnology, 2007, 7, 2301-2308.	0.9	10
427	A New Route to Lead Chalcogenide Nanocrystals. European Journal of Inorganic Chemistry, 2011, 2011, 5196-5201.	1.0	10
428	Very narrow In2S3 nanorods and nanowires from a single source precursor. Materials Letters, 2013, 99, 138-141.	1.3	10
429	Growth of nanocrystalline thin films of metal sulfides [CdS, ZnS, CuS and PbS] at the water–oil interface. RSC Advances, 2015, 5, 62291-62299.	1.7	10
430	New insights into polymer mediated formation of anatase mesocrystals. CrystEngComm, 2017, 19, 3281-3287.	1.3	10
431	The synthesis of a monodisperse quaternary ferrite (FeCoCrO ₄) from the hot injection thermolysis of the single source precursor [CrCoFeO(O ₂ C ^t Bu) ₆ (HO ₂ C ^t Bu) ₃] Dalton Transactions. 2018. 47. 376-381.	1.6	10
432	Polar and non-polar structures of NH ₄ TiOF ₃ . Journal of Applied Crystallography, 2019, 52, 23-26.	1.9	10

#	Article	IF	CITATIONS
433	A new differential method for determining orders and rates of reactions and its application to solid state reactions. Oart II. some empirical observations on the isothermal dehydration of calcium oxalate monohydrate. Thermochimica Acta, 1982, 53, 195-202.	1.2	9
434	The synthesis and characterisation of polyene complexes with divalent metal ions: Mg(II), Ca(II), Ni(II), Cu(II) and Zn(II). Inorganica Chimica Acta, 1985, 108, 117-122.	1.2	9
435	Preparation and characterization of some Cr(III) chloro-complexes with nicotinic acid esters. Inorganica Chimica Acta, 1985, 107, 269-274.	1.2	9
436	Low temperature electrochemistry of chromium porphyrins: characterization of transient species. Journal of the Chemical Society Chemical Communications, 1986, , 198.	2.0	9
437	Trisneopentylgallium as a precursor for atomic layer epitaxy of GaAs. Journal of Electronic Materials, 1997, 26, 1174-1177.	1.0	9
438	Conducting ZnO thin films with an unusual morphology: Large flat microcrystals with (0001) facets perpendicular to the plane by chemical bath deposition. Materials Chemistry and Physics, 2011, 127, 174-178.	2.0	9
439	Aerosol-assisted CVD of cadmium diselenoimidodiphosphinate and formation of a new iPr2N2P3+ ion supported by combined DFT and mass spectrometric studies. Dalton Transactions, 2016, 45, 18603-18609.	1.6	9
440	Magnetic spectroscopy of nanoparticulate greigite, Fe ₃ S ₄ . Mineralogical Magazine, 2017, 81, 857-872.	0.6	9
441	Plasmonically enhanced electromotive force of narrow bandgap PbS QD-based photovoltaics. Physical Chemistry Chemical Physics, 2018, 20, 14818-14827.	1.3	9
442	Equilibria and speciation of metal complexes important in hydrometallurgy. Part 1. bis anti-5-nonyl-2-hydroxyacetophenone copper(II) and its pyridine adduct. Inorganica Chimica Acta, 1982, 64, L35-L37.	1.2	8
443	Molecular and crystal structure of cis-bis(L-hydroxyprolinato)-copper(II) tetrahydrate and trans-bis(D-allohydroxyprolinato)-copper(II)–water(2/5). Journal of the Chemical Society Dalton Transactions, 1990, , 213-217.	1.1	8
444	Evidence for a relationship between the generation of reactive intermediates and the physicochemical characteristics of nickel oxides. Archives of Toxicology, 1996, 70, 787-800.	1.9	8
445	Metalorganic Chemical Vapour Deposition of CuInSe ₂ From Copper and Indium Diselenocarbamates for Solar Cell Devices. Materials Research Society Symposia Proceedings, 1997, 485, 157.	0.1	8
446	Developing a coordination chemistry of intact quantum dots: The preparation of novel nanocomposites of PbS with CdS or CdSe. Journal of Materials Research, 1999, 14, 4140-4142.	1.2	8
447	The synthesis and characterisation of two mononuclear tungsten pentacarbonyl complexes of 4,4′-bipyridine and 1,2-bis(4-pyridyl)ethane. Polyhedron, 2000, 19, 1621-1626.	1.0	8
448	Coordination Complexes as Precursors for Semiconductor Films and Nanoparticles. , 2003, , 1005-1063.		8
449	Simple CVD Routes Towards Infiltration of Mesoporous TiO2. Chemical Vapor Deposition, 2005, 11, 254-260.	1.4	8
450	A low temperature synthesis of ZnS nanorods. Journal of Experimental Nanoscience, 2006, 1, 97-102.	1.3	8

#	Article	IF	CITATIONS
451	The Synthesis of Inorganic Materials at the Water–Toluene Interface. Journal of Nanoscience and Nanotechnology, 2007, 7, 1689-1694.	0.9	8
452	Chemical bath deposition of cadmium sulphide on silicon nitride: Influence of surface treatment on film growth. Materials Letters, 2007, 61, 284-287.	1.3	8
453	Electric field dependent photoluminescence studies of nanoparticle sensitized photorefractive polymers. Journal of Applied Physics, 2008, 103, 093702.	1.1	8
454	Full compositional control of PbS _x Se _{1â^²x} thin films by the use of acylchalcogourato lead(<scp>ii</scp>) complexes as precursors for AACVD. Dalton Transactions, 2018, 47, 16938-16943.	1.6	8
455	Chemical vapour deposition of chromium-doped tungsten disulphide thin films on glass and steel substrates from molecular precursors. Journal of Materials Chemistry C, 2018, 6, 9537-9544.	2.7	8
456	Accessing γ-Ga ₂ S ₃ by solventless thermolysis of gallium xanthates: a low-temperature limit for crystalline products. Dalton Transactions, 2019, 48, 15605-15612.	1.6	8
457	Solid solutions of M _{2â^²2x} In _{2x} S ₃ (M = Bi or Sb) by solventless thermolysis. Journal of Materials Chemistry C, 2019, 7, 5112-5121.	2.7	8
458	Crystal structures and physicochemical studies of some novel divalent and trivalent transition metal chelates of N-morpholine-N'-benzoylthiourea. Journal of Molecular Structure, 2021, 1229, 129791.	1.8	8
459	Tunable structural and optical properties of CuInS2 colloidal quantum dots as photovoltaic absorbers. RSC Advances, 2021, 11, 21351-21358.	1.7	8
460	The spontaneous resolution of a copper(II) α-amino acid complex: [Cu(II)(H3N·C5H10·CH·NH2·COO)2] [HgI3]2. Inorganica Chimica Acta, 1982, 65, L159.	1.2	7
461	Equilibria and speciation of metal complexes important in hydrometallurgy part 2. adducts of bis anti-5-t-nonyl-2-hydroxyacetophenone oxime copper(II) with pyridine and ammonia in non-aqueous solvents studied by electron spin resonance. Hydrometallurgy, 1982, 8, 331-339.	1.8	7
462	Notes. X-Ray crystal structure of a copper(II) complex of the neurotoxic amino acid,DL-α-amino-β-methylaminopropionic acid. Journal of the Chemical Society Dalton Transactions, 1990, , 1985-1987.	1.1	7
463	The crystal structures of two plant non-protein neurotoxic amino acids. Phytochemistry, 1991, 30, 3635-3638.	1.4	7
464	On the circular dichroism of tris(S-alaninato)chromium: Absolute configurations and evidence for unexpected lability. Polyhedron, 1991, 10, 575-577.	1.0	7
465	Novel chiral compounds of group 13 metals: the X-ray crystal structures of [((S)-2-methylbutyl)2MPtBu2]2 (M=Ga or In). Journal of Organometallic Chemistry, 1996, 524, 95-101.	0.8	7
466	Defining Conditions for the Etching of Silicon in an Inductive Coupled Plasma Reactor. Materials Research Society Symposia Proceedings, 1999, 605, 299.	0.1	7
467	Spectroscopic studies of nanoparticle-sensitised photorefractive polymers. Chemical Physics, 2005, 316, 171-177.	0.9	7
468	Synthesis, characterization, and crystal structure of a copper(II) complex of 1,10-phenanthroline and succinate. Journal of Coordination Chemistry, 2011, 64, 2353-2360.	0.8	7

#	Article	IF	CITATIONS
469	COBALT(II)/NICKEL(II) COMPLEXES OF DITHIOACETYLACETONE [M(SacSac) ₂](M = Co, Ni) AS SINGLE SOURCE PRECURSORS FOR COBALT/NICKEL SULFIDE NANOSTRUCTURES. International Journal of Nanoscience, 2011, 10, 815-822.	0.4	7
470	The oriented self-assembly of small PbSe nanocrystals into extended structures â€~nanoworms'. Materials Letters, 2012, 77, 78-81.	1.3	7
471	Terbium Oxide, Fluoride, and Oxyfluoride Nanoparticles with Magneto-optical Properties. Bulletin of the Chemical Society of Japan, 2015, 88, 1453-1458.	2.0	7
472	The influences of the concentrations of "green capping agents―as stabilizers and of ammonia as an activator in the synthesis of ZnS nanoparticles and their polymer nanocomposites. Green Processing and Synthesis, 2017, 6, 173-182.	1.3	7
473	Morphological influence of deposition routes on lead sulfide thin films. Inorganica Chimica Acta, 2019, 498, 119116.	1.2	7
474	The deposition of cadmium selenide and cadmium phosphide thin films from cadmium thioselenoimidodiphosphinate by AACVD and the formation of an aromatic species. Dalton Transactions, 2019, 48, 1436-1442.	1.6	7
475	Tailoring Shape and Crystallographic Phase of Copper Sulfide Nanostructures Using Novel Thiourea Complexes as Single Source Precursors. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29, 917-927.	1.9	7
476	Heterometallic 3d–4f Complexes as Air-Stable Molecular Precursors in Low Temperature Syntheses of Stoichiometric Rare-Earth Orthoferrite Powders. Inorganic Chemistry, 2020, 59, 15796-15806.	1.9	7
477	Complexes of polyene antibiotics with divalent metal ions: complexes of Cu(II) with nystatin studied by visible circular dichroism. Journal of Inorganic and Nuclear Chemistry, 1981, 43, 1669-1670.	0.5	6
478	Specific heat anomalies in thermochromic compounds containing mercury(II) and iodide. Thermochimica Acta, 1981, 47, 371-373.	1.2	6
479	A thermal and Raman investigation of the phase transitions above room temperature in anhydrous potassium acetate. Journal of Physics and Chemistry of Solids, 1983, 44, 565-568.	1.9	6
480	Equilibria and speciation of metal complexes important in hydrometallurgy. Part 3. Studies of the copper(II) complexes of 5-nonylsalicylaldoxime (Acorga P50), the effect of 4-nonylphenol and the formation of five-co-ordinate adducts with nitrogenous bases. Journal of the Chemical Society Dalton Transactions, 1983, , 2043.	1.1	6
481	EQUILIBRIA AND SPECIATION IMPORTANT IN HYDROMETALLURGY. PART IV. A STUDY OF THE SOLVENT EXTRACTION OF COPPER(II) BY LIX63. Journal of Coordination Chemistry, 1983, 13, 11-15.	0.8	6
482	Isomerism of mixed ligand copper(II) complexes containing 1,10-phenanthroline and oxalate. Inorganica Chimica Acta, 1988, 147, 3-4.	1.2	6
483	Facile isolation, from L. sativus seed, of the neurotoxin β-N-oxalyl-L-α,β-diaminopropionic acid as the copper complex and studies of the coordination chemistry of copper and zinc with the amino acid in aqueous solution. Journal of Inorganic Biochemistry, 1990, 39, 209-216.	1.5	6
484	The control of growth dynamics by the use of designed precursors for the MOCVD of electronic ceramics. Materials Science in Semiconductor Processing, 1999, 2, 165-171.	1.9	6
485	Celebration of Inorganic Lives. Coordination Chemistry Reviews, 2000, 209, 35-47.	9.5	6
486	High efficiency solution infiltration routes to thin films with photonic properties. Journal of Experimental Nanoscience, 2006, 1, 221-233.	1.3	6

#	Article	IF	CITATIONS
487	Nanorods of CoP, CdS, and ZnS. Pure and Applied Chemistry, 2006, 78, 1651-1665.	0.9	6
488	Arene Thiolato, Selenolato, and Tellurolato Complexes of Mercury. Inorganic Syntheses, 2007, , 24-28.	0.3	6
489	Reaction ofo-phenylenediamine with diacetyl monoxime: characterisation of the product by solid-state13C and15N MAS NMR. Magnetic Resonance in Chemistry, 2007, 45, 59-64.	1.1	6
490	Sexithiophenes as efficient luminescence quenchers of quantum dots. Beilstein Journal of Organic Chemistry, 2011, 7, 1722-1731.	1.3	6
491	Interfacial synthesis of pyramidal lead sulfide crystallites with high energy {331} facets. Journal of Colloid and Interface Science, 2011, 354, 210-218.	5.0	6
492	Triggered aggregation of PbS nanocrystal dispersions; towards directing the morphology of hybrid polymer films using a removable bilinker ligand. Journal of Colloid and Interface Science, 2011, 358, 151-159.	5.0	6
493	Deposition of nanostructured films of CdSe and CdS using three layered water–oil–amphiphile/salt system. Journal of Materials Chemistry C, 2013, 1, 671-676.	2.7	6
494	Synthesis and characterization of iron tin oxide thin films from single source bimetallic precursors. Polyhedron, 2014, 69, 40-47.	1.0	6
495	Copper-complexed isonicotinic acid functionalized aluminum oxide nanoparticles. Main Group Chemistry, 2015, 15, 1-15.	0.4	6
496	Controlled aggregation of quantum dot dispersions by added amine bilinkers and effects on hybrid polymer film properties. RSC Advances, 2015, 5, 95512-95522.	1.7	6
497	Photoactive composite films prepared from mixtures of polystyrene microgel dispersions and poly(3-hexylthiophene) solutions. Soft Matter, 2015, 11, 8322-8332.	1.2	6
498	Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20160278.	1.6	6
499	Ferromagnetic FeSe2 from a mixed sulphur-selenium complex of iron [Fe{(SePPh2NPPh2S)2N}3] through pyrolysis. Heliyon, 2020, 6, e03763.	1.4	6
500	Synthesis of CdS and PbS nanoparticles by the thermal decomposition of ethyl xanthate complexes in castor oil using the heat-up technique. Materials Science in Semiconductor Processing, 2021, 122, 105493.	1.9	6
501	A new differential method for determining orders and rates of reactions and its application to solid state reactions. Part I. Some simple decompositions. Thermochimica Acta, 1981, 46, 327-331.	1.2	5
502	1H spin echo NMR evidence for the interaction of chromium(VI) with glutathione in intact erythrocytes. Inorganica Chimica Acta, 1989, 155, 25-26.	1.2	5
503	The X-ray structure of bis-2,2-dimethyl-6,6,7,7,8,8,8-heptafluorooctane-3,5-dionatolead(II): an eight-coordinate dimer with bridging fluorine atoms. Journal of the Chemical Society Chemical Communications, 1992, , 1257.	2.0	5
504	Generation of substance P carbamate in neutral aqueous solution. FEBS Letters, 1993, 329, 249-252.	1.3	5

#	Article	IF	CITATIONS
505	MOCVD of CuInE2 (Where E = S or Se) and Related Materials for Solar Cell Devices. Materials Research Society Symposia Proceedings, 1999, 606, 147.	0.1	5
506	Charge-transfer photochemistry of bis(diethyl-diselenocarbamato)copper(II). Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2000, 56, 351-356.	2.0	5
507	Some effects of single molecule precursors on the synthesis of CdS nanoparticles. Materials Science and Technology, 2005, 21, 237-242.	0.8	5
508	Cadmium and Lead Thiosemicarbazide Complexes: Precursors for the Synthesis of CdS Nanorods and PbS nanoparticles. Materials Research Society Symposia Proceedings, 2005, 879, 1.	0.1	5
509	N,N'-diisopropylthiourea and N,N'-dicyclohexyl-thiourea zinc(II) complexes as precursors for the synthesis of ZnS nanoparticles. South African Journal of Science, 2010, 105, .	0.3	5
510	High-throughput route to Cu2â°'xS nanoparticles from single molecular precursor. Materials Science in Semiconductor Processing, 2012, 15, 218-221.	1.9	5
511	Photoelectrochemical Formation of Polysulfide at PbS QD-Sensitized Plasmonic Electrodes. Journal of Physical Chemistry Letters, 2019, 10, 5357-5363.	2.1	5
512	Synthesis of iron sulfide thin films and powders from new xanthate precursors. Journal of Crystal Growth, 2019, 522, 175-182.	0.7	5
513	Synthesis, X-ray Single-Crystal Structural Characterization, and Thermal Analysis of Bis(O-alkylxanthato)Cd(II) and Bis(O-alkylxanthato)Zn(II) Complexes Used as Precursors for Cadmium and Zinc Sulfide Thin Films. Inorganic Chemistry, 2021, 60, 7573-7583.	1.9	5
514	Tunable structural, morphological and optical properties of undoped, Mn, Ni and Ag-doped CuInS2 thin films prepared by AACVD. Materials Science in Semiconductor Processing, 2022, 137, 106224.	1.9	5
515	<i>catena</i> -Poly[diethyl(2-hydroxyethyl)ammonium [[tetra-μ-acetato-β ⁸ <i>O</i> : <i>O</i> ′-dicuprate(II)(<i>Cu</i> — <i>Cu</i>]-μ-acetato-β <sup dichloromethane solvate]. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, m163-m164.</sup 	0.2/sup>	<ဠO: <i< td=""></i<>
516	Dimorphism of β-n-oxalyl-l-α, β-diaminopropionic acid. Phytochemistry, 1982, 21, 2001-2004.	1.4	4
517	Stability constants for, and structural investigation of, divalent metal ion complexes with polyene antibiotics. Inorganica Chimica Acta, 1985, 108, 123-127.	1.2	4
518	The kinetics of the reaction of chromium(III) with L-Cysteine. Inorganica Chimica Acta, 1985, 96, L35-L36.	1.2	4
519	The kinetics of the solid-state dimerization of aquabis-N-acetyl-β-alaninatocopper(II)monohydrate. Polyhedron, 1986, 5, 659-662.	1.0	4
520	X-ray single-crystal structure of 2 (S),4 (R)-4-hydroxyarginine from Lens culinaris seeds. Phytochemistry, 1999, 50, 1201-1204.	1.4	4
521	Synthesis of Self-Capped Metal Sulfide Nanoparticles. Materials Research Society Symposia Proceedings, 1999, 581, 175.	0.1	4
522	Charge-transfer photochemistry of the ternary complex (diselenocarbamato,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5	50,62 Td (d	lithiophospł

#	Article	IF	CITATIONS
523	New Approach Towards The Deposition of I-III-VI Thin Films. Materials Research Society Symposia Proceedings, 2001, 692, 1.	0.1	4
524	Single step solution deposition of multilayer solar absorber films at ambient temperature. Journal of Materials Chemistry, 2006, 16, 3174.	6.7	4
525	Synthesis and X-ray single crystal structures of [Mo(S ₂ CN <i> ⁿ) Tj ETQq1 1 0.784314 r Chemistry, 2008, 61, 79-84.</i>	gBT /Over 0.8	rlock 10 Tf 5 4
526	Methanolysis of tetraphenylborate (BPh4â^') as a reaction unit in halotris(2,4-pentadianato) complexes of Zr(iv) and Hf(iv). Chemical Communications, 2008, , 2456.	2.2	4
527	Synthesis, characterization and X-ray diffraction of [Cu(malonate)(phen)2]2·17H2O complex. Journal of Molecular Structure, 2011, 1001, 12-15.	1.8	4
528	Effects of added thiol ligand structure on aggregation of non-aqueous ZnO dispersions and morphology of spin-coated films. RSC Advances, 2015, 5, 18565-18577.	1.7	4
529	Precursor determined lateral size control of monolayer MoS ₂ nanosheets from a series of alkylammonium thiomolybdates: a reversal of trend between growth media. Chemical Communications, 2017, 53, 6428-6431.	2.2	4
530	Metal ion complexes of amino acids. Part III. A reconsideration of the copper(II) complexes of D-cycloserine. Inorganica Chimica Acta, 1983, 78, L37-L38.	1.2	3
531	A study of the reaction between chromium(III) hexaammine and glycine in a melt. Polyhedron, 1990, 9, 119-124.	1.0	3
532	Novel Approaches to the Deposition of Selenium Containing Materials. Phosphorus, Sulfur and Silicon and the Related Elements, 1998, 136, 431-446.	0.8	3
533	Novel Route for the Preparation of CuSe and CuInSe2 Nanoparticles. Materials Research Society Symposia Proceedings, 1998, 536, 371.	0.1	3
534	Group III Metal Sulfide Thin Films From Single-Source Precursors by Chemical Vapor Deposition (CVD) Techniques. Materials Research Society Symposia Proceedings, 1999, 606, 127.	0.1	3
535	Evidence that the reactions of nickel in the presence of vitamin C do not produce toxic oxygen intermediates such as hydroxyl but ascorbate and carbon radicals. Archives of Toxicology, 2000, 74, 5-12.	1.9	3
536	Chemical Bath Deposition of Zinc Sulfide from Acidic Solutions. Materials Research Society Symposia Proceedings, 2001, 668, 1.	0.1	3
537	The effect of zinc oxide nanostructure on the performance of hybrid polymer/zinc oxide solar cells. , 2005, , .		3
538	Selenium and Tellurium Containing Precursors for Semiconducting Materials. , 2011, , 201-237.		3
539	Probing the growth mechanism of self-catalytic lead selenide wires. Journal of Materials Chemistry, 2012, 22, 12731.	6.7	3
540	Heteroleptic titanium alkoxides as single-source precursors for MOCVD of micro-structured TiO2. Polyhedron, 2015, 85, 761-769.	1.0	3

#	Article	IF	CITATIONS
541	Characteristics of nanocrystalline thin films of cadmium sulphide deposited at the water-oil interface. Journal of Colloid and Interface Science, 2017, 496, 474-478.	5.0	3
542	Textured ZnO films from evaporation-triggered aggregation of nanocrystal dispersions and their use in solar cells. Physical Chemistry Chemical Physics, 2017, 19, 27081-27089.	1.3	3
543	A Facile Green Synthesis of Ultranarrow PbS Nanorods. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29, 2274-2281.	1.9	3
544	Structural Investigations of α-MnS Nanocrystals and Thin Films Synthesized from Manganese(II) Xanthates by Hot Injection, Solvent-Less Thermolysis, and Doctor Blade Routes. ACS Omega, 2021, 6, 27716-27725.	1.6	3
545	Novel equilibria in copper(II): Amino acid systems. Transition Metal Chemistry, 1977, 2, 275-276.	0.7	2
546	Microcalorimetric evaluation of the biological activity of polyene complexes with divalent metal ions: Mg(II), Ca(II), Ni(II), Cu(II) and Zn(II). Inorganica Chimica Acta, 1985, 108, 129-132.	1.2	2
547	Further studies on the copper(II) complexes of lysine: [Cu(II)(H3N·C5H10·CH·NH2·COO)2] [HgI3]2. Inorganica Chimica Acta, 1986, 121, 67-69.	1.2	2
548	Fluorescence studies of dye displacement from DNA by chromium(III) complexes: Evidence for cation induced DNA condensations. Toxicological and Environmental Chemistry, 1992, 35, 149-159.	0.6	2
549	Nucleation Studies Of Zns And ZnO Growth By Chemical Bath Deposition (CBD) On The Surface Of Glass And Tin Oxide Coated Glass. Materials Research Society Symposia Proceedings, 1997, 485, 255.	0.1	2
550	Spectroscopic and Structural Studies of Some Precursors for the Deposition of PZT and Related Materials by MOCVD. Materials Research Society Symposia Proceedings, 1997, 495, 57.	0.1	2
551	Synthesis and Characterization of Mn Doped ZnS Quantum Dots from a Single Source Precursor. Materials Research Society Symposia Proceedings, 1998, 536, 353.	0.1	2
552	Novel precursors for the MOCVD of ferroelectric thin films. Integrated Ferroelectrics, 1999, 26, 85-92.	0.3	2
553	D.C. conductivity of transparent conductive ZnO:Al films in the temperature range 80–360 K. Ionics, 2005, 11, 259-261.	1.2	2
554	Sterically hindered arene chalcogenols. Inorganic Syntheses, 2007, , 158-162.	0.3	2
555	N-Donor adducts of dimethylzinc. Inorganic Syntheses, 2007, , 15-18.	0.3	2
556	239. Analysis and Dissolution of SSC-Related Calcinoses. Rheumatology, 2014, 53, i149-i149.	0.9	2
557	Assembly of Submicron Sized Ag, Co, and Ni Particles Into Thin Films at Liquid/Liquid Interfaces. Journal of Nanoscience and Nanotechnology, 2016, 16, 5420-5425.	0.9	2
558	Surface structure, optoelectronic properties and charge transport in ZnO nanocrystal/MDMO-PPV multilayer films. Physical Chemistry Chemical Physics, 2018, 20, 12260-12271.	1.3	2

#	Article	IF	CITATIONS
559	Ricinoleic Acid as a Green Alternative to Oleic Acid in the Synthesis of Doped Nanocrystals. ChemistrySelect, 2018, 3, 13548-13552.	0.7	2
560	<i>ci>cis</i> -Bis(<scp>L</scp> -DOPA-Î [®] ² <i>N</i> , <i>O</i>)copper(II) monohydrate: synthesis, crystal structure, and approaches to the analysis of pseudosymmetry. Acta Crystallographica Section C, Structural Chemistry, 2021, 77, 383-390.	0.2	2
561	The circular dichroism in the visible region of the 1:1 copper(II):I-arginine species. Journal of Inorganic and Nuclear Chemistry, 1978, 40, 1671-1672.	0.5	1
562	Origin of an apparent inequality in the stepwise stability constants of enantiomeric systems. Journal of Chromatography A, 1979, 174, 212-215.	1.8	1
563	Chapter 10. Cu, Ag, Au; Zn, Cd, Hg. Annual Reports on the Progress of Chemistry Section A, 1982, 79, 335.	0.8	1
564	A study of the anation reaction of [Cr(NH3)6][C2O4]1.5 Â∙ 2H2O in the solid state. Polyhedron, 1990, 9, 1175-1179.	1.0	1
565	A Novel Differential Thermal Analysis Method for Quantifying the Sorption Capacity of Smectite Clay. Clays and Clay Minerals, 1990, 38, 322-326.	0.6	1
566	Synthesis and Characterization of Mn Doped CdS Quantum Dots from a Single Source Precursor. Materials Research Society Symposia Proceedings, 1999, 581, 133.	0.1	1
567	Functionalisation of CdSe and GaAs Quantum Dots. Materials Research Society Symposia Proceedings, 1999, 581, 169.	0.1	1
568	Improved quantum-dot-sensitized photorefractive polymer composite. , 2002, , .		1
569	Metal-Organic Chemical Vapour Deposition of II-VI Semiconductor Thin Films Using Single-Source Approach. Materials Research Society Symposia Proceedings, 2002, 730, 1.	0.1	1
570	N-alkyldithiocarbamato complexes [Cd(S2CNHR)2] (R = C2H5, C4H9, C6H13, C12H25); Synthesis, Characterisation and Deposition of II/VI Nanoparticles Materials Research Society Symposia Proceedings, 2005, 879, 1.	0.1	1
571	ZnS, CdS and ZnxCd1-xS Thin Films from Zn(II) and Cd(II) Complexes of 1, 1, 5, 5-Tetramethyl-2-4-dithiobiuret As Single Molecular Precursors. Materials Research Society Symposia Proceedings, 2008, 1145, 1.	0.1	1
572	Deposition and Characterization of CdSe Nanoparticles in Polymeric Materials. Key Engineering Materials, 0, 442, 364-371.	0.4	1
573	The Assembly of Metal Nanocrystals into Films Mediated by Amines at the Water–Oil Interface. Journal of Physical Chemistry C, 2011, 115, 14668-14672.	1.5	1
574	Colloidal preparation of copper selenide and indium selenide nanoparticles by single source precursors approach. , 2013, , .		1
575	Precursor Chemistry – Main Group Metal Chalcogenides. , 2013, , 1001-1020.		1
576	Synthesis and structural characterisation of a new tantalum hydroxylamide dimer. Inorganic Chemistry Communication, 2014, 44, 180-182.	1.8	1

#	Article	IF	CITATIONS
577	A Novel Synthesis of Cadmium Phosphide Nanoparticles Using the Single-Source Precursor [MeCdPtBu2]3. Advanced Materials, 1998, 10, 527-528.	11.1	1
578	Chapter 10. Cu, Ag, Au; Zn, Cd, Hg. Annual Reports on the Progress of Chemistry Section A, 1981, 78, 281.	0.8	0
579	A study of the interaction of methyl salicylate with smectite clays. Polyhedron, 1991, 10, 567-574.	1.0	Ο
580	Reactive chromium species potentially generated by welding fume. Toxicological and Environmental Chemistry, 1995, 49, 149-155.	0.6	0
581	Novel Precursors for MOCVD of Thin Films of Metal Oxides Containing Early Transition Metals. Materials Research Society Symposia Proceedings, 1998, 541, 333.	0.1	0
582	Optimising of the Physico-Chemical Properties of a Novel Barium Sulphate Preparation for the X-Ray Examination of the Intestine. Materials Research Society Symposia Proceedings, 1998, 550, 59.	0.1	0
583	Large Area Deposition of Cadmium Sulfide by Chemical Bath Deposition for Photovoltaic Applications. Materials Research Society Symposia Proceedings, 1998, 551, 129.	0.1	Ο
584	New Approaches to Chemical Bath Deposition of Chalcogenides. Materials Research Society Symposia Proceedings, 1999, 606, 199.	0.1	0
585	Synthesis and Characterization of CdSe/CdS Core-Shell and CdSe/CdS Composites. Materials Research Society Symposia Proceedings, 1999, 581, 291.	0.1	Ο
586	Synthesis of Passivated Metal Nanoparticles. Materials Research Society Symposia Proceedings, 1999, 581, 47.	0.1	0
587	Improved Routes to Nanocrystalline Metal Oxide Films for Dye-Sensitised Solar Cells and Related Applications. Materials Research Society Symposia Proceedings, 2001, 668, 1.	0.1	Ο
588	Improved Routes towards Solution Deposition of Indium Sulfide Thin Films for Photovoltaic Applications:. Materials Research Society Symposia Proceedings, 2001, 692, 1.	0.1	0
589	Influence of Zinc on the Formation of Granules of Calcium Pyrophosphate. Materials Research Society Symposia Proceedings, 2001, 711, 1.	0.1	Ο
590	A Single Source Approach To Deposition Of Nickel and Palladium Sulfide Thin Films By LP-MOCVD. Materials Research Society Symposia Proceedings, 2002, 744, 1.	0.1	0
591	Deposition of II/VI thin films from Novel Single-Source Precursors. Materials Research Society Symposia Proceedings, 2002, 744, 1.	0.1	Ο
592	Single-Source Approach for The Growth of I-III-VI Thin Films. Materials Research Society Symposia Proceedings, 2002, 730, 1.	0.1	0
593	New Zinc and Cadmium Chalcogenide Structured Nanoparticles. Materials Research Society Symposia Proceedings, 2003, 789, 282.	0.1	0
594	New Routes To Metal Chalcogenide Nanostructures Materials Research Society Symposia Proceedings, 2004, 829, 414.	0.1	0

#	Article	IF	CITATIONS
595	The General Synthesis of Nanostructured V/VI Semiconductors. Materials Research Society Symposia Proceedings, 2004, 829, 268.	0.1	0
596	Synthesis of GaS Nanoparticles from a Single-Source Precursor [Ga(S2CNEt2)3/. Materials Research Society Symposia Proceedings, 2005, 879, 1.	0.1	0
597	A NOVEL LOW TEMPERATURE SYNTHESIS OF CRYSTALLINE POWDERS OF CADMIUM AND ZINC SELENIDES VIA ELECTRON TRANSFER REACTIONS IN ORGANIC SOLUTION. International Journal of Nanoscience, 2005, 04, 827-830.	0.4	0
598	Optical Characterisation of CdSe Nanocrystal Quantum Dots Grown from New Single Source Precursors. , 2007, , .		0
599	Electric Field Dependent Photoluminescence Studies of Photorefractive Polymer/Semiconductor Nanoparticle Composites. AIP Conference Proceedings, 2007, , .	0.3	0
600	Recent Developments in the Synthesis, Properties and Assemblies of Nanocrystals. , 0, , 1-43.		0
601	Deposition of TiO2 Films by Liquid Injection ALD using New Titanium 2,5-dimethylpyrrolyl Complexes. ECS Transactions, 2009, 25, 813-819.	0.3	0
602	Amine mediated growth and assembly of CdS nanocrystals at water–petroleum ether interface. Chemical Physics Letters, 2012, 536, 92-95.	1.2	0
603	Photoluminescence: Nearâ€Unity Quantum Yields from Chloride Treated CdTe Colloidal Quantum Dots (Small 13/2015). Small, 2015, 11, 1482-1482.	5.2	Ο
604	Formation and Characterization of Model Iron Sulfide Scales with Disulfides and Thiols on Steel Pipeline Materials by an Aerosol-Assisted Chemical Vapor Method. Energy & Fuels, 2017, 31, 2496-2500.	2.5	0
605	Appendix 2: Health and Safety Information. , 0, , 321-324.		0