
Michael D Sorenson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/179417/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genetic architecture facilitates then constrains adaptation in a host–parasite coevolutionary arms race. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2121752119.	3.3	11
2	Inter- and intra-archipelago dynamics of population structure and gene flow in a Polynesian bird. Molecular Phylogenetics and Evolution, 2021, 156, 107034.	1.2	4
3	Leveraging genomics to understand threats to migratory birds. Evolutionary Applications, 2021, 14, 1646-1658.	1.5	6
4	Variation in the Non-mimetic Vocalizations of Brood-Parasitic Indigobirds and Their Potential Role in Speciation. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	0
5	Population differentiation and historical demography of the threatened snowy plover Charadrius nivosus (Cassin, 1858). Conservation Genetics, 2020, 21, 387-404.	0.8	6
6	Variable phylogeographic histories of five forest birds with populations in Upper and Lower Guinea: implications for taxonomy and evolutionary conservation. Ostrich, 2019, 90, 257-270.	0.4	0
7	Phylogenomics clarifies biogeographic and evolutionary history, and conservation status of West Indian tremblers and thrashers (Aves: Mimidae). Molecular Phylogenetics and Evolution, 2019, 136, 196-205.	1.2	5
8	ddRADâ€seq data reveal significant genomeâ€wide population structure and divergent genomic regions that distinguish the mallard and close relatives in North America. Molecular Ecology, 2019, 28, 2594-2609.	2.0	37
9	Persistence of an endangered native duck, feral mallards, and multiple hybrid swarms across the main Hawaiian Islands. Molecular Ecology, 2019, 28, 5203-5216.	2.0	27
10	Multimodal signalling in estrildid finches: song, dance and colour are associated with different ecological and lifeâ€history traits. Journal of Evolutionary Biology, 2017, 30, 1336-1346.	0.8	31
11	Mosaic genome evolution in a recent and rapid avian radiation. Nature Ecology and Evolution, 2017, 1, 1912-1922.	3.4	93
12	Speciation is associated with changing ornamentation rather than stronger sexual selection. Evolution; International Journal of Organic Evolution, 2016, 70, 2823-2838.	1.1	36
13	Population genomic data delineate conservation units in mottled ducks (Anas fulvigula). Biological Conservation, 2016, 203, 272-281.	1.9	37
14	Ancient origin and maternal inheritance of blue cuckoo eggs. Nature Communications, 2016, 7, 10272.	5.8	66
15	ddRAD-seq phylogenetics based on nucleotide, indel, and presence–absence polymorphisms: Analyses of two avian genera with contrasting histories. Molecular Phylogenetics and Evolution, 2016, 94, 122-135.	1.2	61
16	De novo assembly of the dual transcriptomes of a polymorphic raptor species and its malarial parasite. BMC Genomics, 2015, 16, 1038.	1.2	15
17	Speciation genomics and a role for the Z chromosome in the early stages of divergence between Mexican ducks and mallards. Molecular Ecology, 2015, 24, 5364-5378.	2.0	70
18	Population genetic structure of a common host predicts the spread of whiteâ€nose syndrome, an emerging infectious disease in bats. Molecular Ecology, 2015, 24, 5495-5506.	2.0	37

MICHAEL D SORENSON

#	Article	IF	CITATIONS
19	Rapid diversification associated with ecological specialization in Neotropical <i>Adelpha</i> butterflies. Molecular Ecology, 2015, 24, 2392-2405.	2.0	73
20	An experimental test of host song mimicry as a species recognition cue among male brood parasitic indigobirds (<i>Vidua</i> spp.). Auk, 2014, 131, 549-558.	0.7	6
21	Amplification Biases and Consistent Recovery of Loci in a Double-Digest RAD-seq Protocol. PLoS ONE, 2014, 9, e106713.	1.1	144
22	Genotyping HapSTR loci: phase determination from direct sequencing of PCR products. Molecular Ecology Resources, 2011, 11, 1068-1075.	2.2	8
23	A tale of two genomes: contrasting patterns of phylogeographic structure in a widely distributed bat. Molecular Ecology, 2011, 20, 357-375.	2.0	66
24	Replicated hybrid zones of Xiphophorus swordtails along an elevational gradient. Molecular Ecology, 2011, 20, 342-356.	2.0	83
25	Ancient host specificity within a single species of brood parasitic bird. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17738-17742.	3.3	70
26	Community-level interactions and functional ecology of major workers in the hyperdiverse ground-foraging Pheidole (Hymenoptera, Formicidae) of Amazonian Ecuador. Insectes Sociaux, 2010, 57, 441-452.	0.7	33
27	Phylogenetic relationships of <i>Amazonetta</i> , <i>Speculanas</i> , <i>Lophonetta</i> , and <i>Tachyeres</i> : four morphologically divergent duck genera endemic to South America. Journal of Avian Biology, 2010, 41, 186-199.	0.6	25
28	Phylogenetic and structural analysis of the HbA (αA/βA) and HbD (αD/βA) hemoglobin genes in two high-altitude waterfowl from the Himalayas and the Andes: Bar-headed goose (Anser indicus) and Andean goose (Chloephaga melanoptera). Molecular Phylogenetics and Evolution, 2010, 56, 649-658.	1.2	42
29	Sexual imprinting misguides species recognition in a facultative interspecific brood parasite. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 3079-3085.	1.2	8
30	Incomplete reproductive isolation following host shift in brood parasitic indigobirds. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 219-228.	1.2	22
31	Does coevolution promote species richness in parasitic cuckoos?. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 3871-3879.	1.2	49
32	Androgen receptor CAG repeats and body composition among Ariaal men. Journal of Developmental and Physical Disabilities, 2009, 32, 140-148.	3.6	26
33	Parallel evolution in the major haemoglobin genes of eight species of Andean waterfowl. Molecular Ecology, 2009, 18, 3992-4005.	2.0	65
34	Origin of Bannerman's Turaco <i>Tauraco bannermani</i> in relation to historical climate change and the distribution of West African montane forests. Ostrich, 2009, 80, 1-7.	0.4	12
35	Strong mitochondrial DNA support for a Cretaceous origin of modern avian lineages. BMC Biology, 2008, 6, 6.	1.7	208

 $_{36}$ Phylogeny, biogeography and taxonomy of the African wattle-eyes (Aves: Passeriformes:) Tj ETQq0 0 0 rgBT /Overlock 10 Tf $_{1.2}^{50}$ 62 Td (Pl $_{1.2}^{27}$

#	Article	IF	CITATIONS
37	Comparing the genetics of wild and captive populations of Whiteâ€headed Ducks <i>Oxyura leucocephala</i> : consequences for recovery programmes. Ibis, 2008, 150, 807-815.	1.0	10
38	Dopamine receptor genetic polymorphisms and body composition in undernourished pastoralists: An exploration of nutrition indices among nomadic and recently settled Ariaal men of northern Kenya. BMC Evolutionary Biology, 2008, 8, 173.	3.2	166
39	Computation vs. cloning: evaluation of two methods for haplotype determination. Molecular Ecology Resources, 2008, 8, 1239-1248.	2.2	137
40	GENETIC IDENTIFICATION OF EGGS PURPORTEDLY FROM THE EXTINCT LABRADOR DUCK (CAMPTORHYNCHUS)	Tj ETQq0 (0.7	0 rgBT /Ove 11
41	The evolution of sexual dimorphism in parasitic cuckoos: sexual selection or coevolution?. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 1553-1560.	1.2	45
42	Coevolution of Male and Female Genital Morphology in Waterfowl. PLoS ONE, 2007, 2, e418.	1.1	166
43	Genetic Identification of Eggs Purportedly From the Extinct Labrador Duck (Camptorhynchus) Tj ETQq1 1 0.7843	14 rgBT /C 0.9	verlock 10 13
44	Single base errors in PCR products from avian museum specimens and their effect on estimates of historical genetic diversity. Conservation Genetics, 2007, 8, 879-884.	0.8	31
45	The ruddy duck Oxyura jamaicensis in Europe: natural colonization or human introduction?. Molecular Ecology, 2006, 15, 1441-1453.	2.0	21
46	Dispersal ecology versus host specialization as determinants of ectoparasite distribution in brood parasitic indigobirds and their estrildid finch hosts. Molecular Ecology, 2006, 16, 217-229.	2.0	24
47	Hybridization between white-headed ducks and introduced ruddy ducks in Spain. Molecular Ecology, 2006, 16, 629-638.	2.0	83
48	Population structure and loss of genetic diversity in the endangered white-headed duck, Oxyura leucocephala. Conservation Genetics, 2006, 6, 999-1015.	0.8	30
49	Song discrimination suggests premating isolation among sympatric indigobird species and host races. Behavioral Ecology, 2006, 17, 473-478.	1.0	47
50	Sierra Leone Prinia Schistolais leontica in the Fouta Djalon of Guinea, its song, distribution and taxonomic status. Bulletin of the African Bird Club, 2006, 13, 45-48.	0.1	0
51	Genetic continuity of brood-parasitic indigobird species. Molecular Ecology, 2005, 14, 1407-1419.	2.0	32
52	Phylogeography of The Mallard (Anas Platyrhynchos): Hybridization, Dispersal, and Lineage Sorting Contribute to Complex Geographic Structure. Auk, 2005, 122, 949-965.	0.7	61

⁵⁴ PHYLOGEOGRAPHY OF THE MALLARD (ANAS PLATYRHYNCHOS): HYBRIDIZATION, DISPERSAL, AND LINEAGE 0.7 1 SORTING CONTRIBUTE TO COMPLEX GEOGRAPHIC STRUCTURE. Auk, 2005, 122, 1309.

Is Homoplasy or Lineage Sorting the Source of Incongruent mtDNA and Nuclear Gene Trees in the Stiff-Tailed Ducks (Nomonyx-Oxyura)?. Systematic Biology, 2005, 54, 35-55.

#	Article	IF	CITATIONS
55	Speciation in birds: Genes, geography, and sexual selection. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6550-6557.	3.3	228
56	PHYLOGEOGRAPHY OF THE MALLARD (ANAS PLATYRHYNCHOS): HYBRIDIZATION, DISPERSAL, AND LINEAGE SORTING CONTRIBUTE TO COMPLEX GEOGRAPHIC STRUCTURE. Auk, 2005, 122, 949.	0.7	59
57	BEHAVIORAL AND GENETIC IDENTIFICATION OF A HYBRID VIDUA: MATERNAL ORIGIN AND MATE CHOICE IN A BROOD-PARASITIC FINCH. Auk, 2004, 121, 156.	0.7	7
58	Clade-Limited Colonization in Brood Parasitic Finches (Vidua spp.). Systematic Biology, 2004, 53, 140-153.	2.7	112
59	Song mimicry of Black-bellied Firefinch Lagonosticta rara and other finches by the brood-parasitic Cameroon Indigobird Vidua camerunensis in West Africa. Ibis, 2004, 147, 130-143.	1.0	12
60	Behavioral and Genetic Identification of a Hybrid Vidua: Maternal Origin and Mate Choice in a Brood-Parasitic Finch. Auk, 2004, 121, 156-161.	0.7	1
61	Behavioral and Genetic Identification of a Hybrid Vidua: Maternal Origin and Mate Choice in a Brood-Parasitic Finch. Auk, 2004, 121, 156-161.	0.7	1
62	Congruent Avian Phylogenies Inferred from Mitochondrial and Nuclear DNA Sequences. Journal of Molecular Evolution, 2003, 57, 27-37.	0.8	48
63	Lack of mitochondrial genetic structure in hamlets (Hypoplectrus spp.): recent speciation or ongoing hybridization?. Molecular Ecology, 2003, 12, 2975-2980.	2.0	49
64	Speciation by host switch in brood parasitic indigobirds. Nature, 2003, 424, 928-931.	13.7	219
65	More Taxa, More Characters: The Hoatzin Problem Is Still Unresolved. Molecular Biology and Evolution, 2003, 20, 1484-1498.	3.5	78
66	Phylogenetic relationships of African sunbird-like warblers: Moho (<i>Hypergerus atriceps</i>), Green Hylia (<i>Hylia prasina</i>) and Tit-hylia (<i>Pholidornis rushiae</i>). Ostrich, 2003, 74, 8-17.	0.4	34
67	MICROSATELLITE AMPLIFICATION FROM MUSEUM FEATHER SAMPLES: EFFECTS OF FRAGMENT SIZE AND TEMPLATE CONCENTRATION ON GENOTYPING ERRORS. Auk, 2003, 120, 982.	0.7	59
68	Microsatellite Amplification From Museum Feather Samples: Effects of Fragment Size and Template Concentration on Genotyping Errors. Auk, 2003, 120, 982-989.	0.7	66
69	mtDNA from fossils reveals a radiation of Hawaiian geese recently derived from the Canada goose (Branta canadensis). Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1399-1404.	3.3	116
70	Molecular Genetic Perspectives on Avian Brood Parasitism. Integrative and Comparative Biology, 2002, 42, 388-400.	0.9	77
71	Survival and Philopatry of Female Redheads Breeding in Southwestern Manitoba. Journal of Wildlife Management, 2002, 66, 162.	0.7	28
72	Phylogeography and conservation genetics of Eld's deer (Cervus eldi). Molecular Ecology, 2002, 12, 1-10.	2.0	84

5

#	Article	IF	CITATIONS
73	Behavioural and genetic evidence of a recent population switch to a novel host species in brood-parasitic indigobirds Vidua chalybeata. Ibis, 2002, 144, 373-383.	1.0	35
74	A SINGLE ANCIENT ORIGIN OF BROOD PARASITISM IN AFRICAN FINCHES: IMPLICATIONS FOR HOST-PARASITE COEVOLUTION. Evolution; International Journal of Organic Evolution, 2001, 55, 2550.	1.1	4
75	Characterization of microsatellite loci in village indigobirds Vidua chalybeata and cross-species amplification in estrildid and ploceid finches. Molecular Ecology Notes, 2001, 1, 252-254.	1.7	39
76	A SINGLE ANCIENT ORIGIN OF BROOD PARASITISM IN AFRICAN FINCHES: IMPLICATIONS FOR HOST-PARASITE COEVOLUTION. Evolution; International Journal of Organic Evolution, 2001, 55, 2550-2567.	1.1	92
77	Genetic evidence for female host-specific races of the common cuckoo. Nature, 2000, 407, 183-186.	13.7	238
78	Imprinting and the origin of parasite–host species associations in brood-parasitic indigobirds, Vidua chalybeata. Animal Behaviour, 2000, 59, 69-81.	0.8	173
79	The evolution of postcopulatory displays in dabbling ducks (Anatini): a phylogenetic perspective. Animal Behaviour, 2000, 59, 953-963.	0.8	24
80	Phylogenetic position of turtles among amniotes: evidence from mitochondrial and nuclear genes. Gene, 2000, 259, 139-148.	1.0	87
81	Interordinal Relationships of Birds and Other Reptiles Based on Whole Mitochondrial Genomes. Systematic Biology, 1999, 48, 138-152.	2.7	253
82	Phylogenetic constraint on male parental care in the dabbling ducks. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 759-763.	1.2	20
83	Relationships of the extinct moa-nalos, flightless Hawaiian waterfowl, based on ancient DNA. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 2187-2193.	1.2	81
84	Primers for a PCR-Based Approach to Mitochondrial Genome Sequencing in Birds and Other Vertebrates. Molecular Phylogenetics and Evolution, 1999, 12, 105-114.	1.2	685
85	Phylogeny and Biogeography of Dabbling Ducks (Genus: Anas): A Comparison of Molecular and Morphological Evidence. Auk, 1999, 116, 792-805.	0.7	165
86	Comparing Molecular Evolution in Two Mitochondrial Protein Coding Genes (Cytochromeband ND2) in the Dabbling Ducks (Tribe: Anatini). Molecular Phylogenetics and Evolution, 1998, 10, 82-94.	1.2	238
87	Numts: A Challenge for Avian Systematics and Population Biology. Auk, 1998, 115, 214-221.	0.7	406
88	An Extra Nucleotide is not Translated in Mitochondrial ND3 of Some Birds and Turtles. Molecular Biology and Evolution, 1998, 15, 1568-1571.	3.5	186
89	Multiple independent origins of mitochondrial gene order in birds. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 10693-10697.	3.3	239
90	Effects of intra- and interspecific brood parasitism on a precocial host, the canvasback, Aythya valisineria. Behavioral Ecology, 1997, 8, 153-161.	1.0	48

6

MICHAEL D SORENSON

#	Article	IF	CITATIONS
91	Phylogenetic Relationships among and within Select Avian Orders Based on Mitochondrial DNA. , 1997, , 213-247.		133
92	Description of the first complete skeleton of the extinct New Zealand gooseCnemiornis calcitrans(Aves: Anatidae), and a reassessment of the relationships ofCnemiornis. Journal of Zoology, 1997, 243, 695-718.	0.8	21
93	Multiple independent transpositions of mitochondrial DNA control region sequences to the nucleus. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 15239-15243.	3.3	245
94	Ancient DNA and island endemics. Nature, 1996, 381, 484-484.	13.7	78
95	The Effects of Late-Incubation Body Mass on Reproductive Success and Survival of Canvasbacks and Redheads. Condor, 1995, 97, 953-962.	0.7	33
96	Evidence of Conspecific Nest Parasitism and Egg Discrimination in the Sora. Condor, 1995, 97, 819-821.	0.7	15
97	Relative Success of Overwater and Upland Mallard Nests in Southwestern Manitoba. Journal of Wildlife Management, 1993, 57, 578.	0.7	29
98	Comment: Why is conspecific nest parasitism more frequent in waterfowl than in other birds?. Canadian Journal of Zoology, 1992, 70, 1856-1858.	0.4	44
99	The functional significance of parasitic egg laying and typical nesting in redhead ducks: an analysis of individual behaviour. Animal Behaviour, 1991, 42, 771-796.	0.8	90
100	A Record Early Season for Marsh-Breeding Birds in Southwestern Manitoba. Blue Jay, 1988, 46, .	0.0	1