
Paiboon Vattanaviboon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1794119/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	mfsQ encoding an MFS efflux pump mediates adaptive protection of Stenotrophomonas maltophilia against benzalkonium chloride. Canadian Journal of Microbiology, 2021, 67, 491-495.	1.7	8
2	The role of MfsR, a TetR-type transcriptional regulator, in adaptive protection of <i>Stenotrophomonas maltophilia</i> against benzalkonium chloride via the regulation of <i>mfsQ</i> . FEMS Microbiology Letters, 2021, 368, .	1.8	6
3	Identification of Burkholderia pseudomallei Genes Induced During Infection of Macrophages by Differential Fluorescence Induction. Frontiers in Microbiology, 2020, 11, 72.	3.5	5
4	Transcriptional regulation of the Pseudomonas aeruginosa iron-sulfur cluster assembly pathway by binding of IscR to multiple sites. PLoS ONE, 2019, 14, e0218385.	2.5	6
5	Inactivation of ahpC renders Stenotrophomonas maltophilia resistant to the disinfectant hydrogen peroxide. Antonie Van Leeuwenhoek, 2019, 112, 809-814.	1.7	11
6	Overexpression of Stenotrophomonas maltophilia major facilitator superfamily protein MfsA increases resistance to fluoroquinolone antibiotics. Journal of Antimicrobial Chemotherapy, 2018, 73, 1263-1266.	3.0	13
7	Pseudomonas aeruginosa glutathione biosynthesis genes play multiple roles in stress protection, bacterial virulence and biofilm formation. PLoS ONE, 2018, 13, e0205815.	2.5	52
8	Inactivation of bpsl1039-1040 ATP-binding cassette transporter reduces intracellular survival in macrophages, biofilm formation and virulence in the murine model of Burkholderia pseudomallei infection. PLoS ONE, 2018, 13, e0196202.	2.5	12
9	Pseudomonas aeruginosa ttcA encoding tRNA-thiolating protein requires an iron-sulfur cluster to participate in hydrogen peroxide-mediated stress protection and pathogenicity. Scientific Reports, 2018, 8, 11882.	3.3	21
10	Pseudomonas aeruginosa nfuA: Gene regulation and its physiological roles in sustaining growth under stress and anaerobic conditions and maintaining bacterial virulence. PLoS ONE, 2018, 13, e0202151.	2.5	12
11	The FinR-regulated essential gene fprA, encoding ferredoxin NADP+ reductase: Roles in superoxide-mediated stress protection and virulence of Pseudomonas aeruginosa. PLoS ONE, 2017, 12, e0172071.	2.5	16
12	Regulation of Organic Hydroperoxide Stress Response by Two OhrR Homologs in Pseudomonas aeruginosa. PLoS ONE, 2016, 11, e0161982.	2.5	16
13	Major facilitator superfamily MfsA contributes to multidrug resistance in emerging nosocomial pathogenStenotrophomonas maltophilia: TableÂ1 Journal of Antimicrobial Chemotherapy, 2016, 71, 2990-2991.	3.0	15
14	Agrobacterium tumefaciens estC, Encoding an Enzyme Containing Esterase Activity, Is Regulated by EstR, a Regulator in the MarR Family. PLoS ONE, 2016, 11, e0168791.	2.5	4
15	Pseudomonas aeruginosa IscR-Regulated Ferredoxin NADP(+) Reductase Gene (fprB) Functions in Iron-Sulfur Cluster Biogenesis and Multiple Stress Response. PLoS ONE, 2015, 10, e0134374.	2.5	22
16	Regulation by SoxR of mfsA, Which Encodes a Major Facilitator Protein Involved in Paraquat Resistance in Stenotrophomonas maltophilia. PLoS ONE, 2015, 10, e0123699.	2.5	18
17	Mutation of the gene encoding monothiol glutaredoxin (GrxD) in Pseudomonas aeruginosa increases its susceptibility to polymyxins. International Journal of Antimicrobial Agents, 2015, 45, 314-318.	2.5	18
18	IscR plays a role in oxidative stress resistance and pathogenicity of a plant pathogen, Xanthomonas campestris. Microbiological Research, 2015, 170, 139-146.	5.3	20

#	Article	IF	CITATIONS
19	The Iron-Sulphur Cluster Biosynthesis Regulator IscR Contributes to Iron Homeostasis and Resistance to Oxidants in Pseudomonas aeruginosa. PLoS ONE, 2014, 9, e86763.	2.5	43
20	Copper chloride induces antioxidant gene expression but reduces ability to mediate H2O2 toxicity in Xanthomonas campestris. Microbiology (United Kingdom), 2014, 160, 458-466.	1.8	5
21	Gene Expression and Physiological Role of Pseudomonas aeruginosa Methionine Sulfoxide Reductases during Oxidative Stress. Journal of Bacteriology, 2013, 195, 3299-3308.	2.2	67
22	Pseudomonas aeruginosa Thiol Peroxidase Protects against Hydrogen Peroxide Toxicity and Displays Atypical Patterns of Gene Regulation. Journal of Bacteriology, 2012, 194, 3904-3912.	2.2	38
23	Novel Roles of SoxR, a Transcriptional Regulator from <i>X</i> anthomonas campestris, in Sensing Redox-Cycling Drugs and Regulating a Protective Gene That Have Overall Implications for Bacterial Stress Physiology and Virulence on a Host Plant. Journal of Bacteriology, 2012, 194, 209-217.	2.2	14
24	Evaluation of the Virulence of Xanthomonas campestris pv. campestris Mutant Strains Lacking Functional Genes in the OxyR Regulon. Current Microbiology, 2011, 63, 232-237.	2.2	16
25	Mutations of ferric uptake regulator (fur) impair iron homeostasis, growth, oxidative stress survival, and virulence of Xanthomonas campestris pv. campestris. Archives of Microbiology, 2010, 192, 331-339.	2.2	41
26	Copper ions potentiate organic hydroperoxide and hydrogen peroxide toxicity through different mechanisms in Xanthomonas campestris pv. campestris. FEMS Microbiology Letters, 2010, 313, 75-80.	1.8	15
27	The Catalase-Peroxidase KatG Is Required for Virulence of <i>Xanthomonas campestris</i> pv. campestris in a Host Plant by Providing Protection against Low Levels of H ₂ O ₂ . Journal of Bacteriology, 2009, 191, 7372-7377.	2.2	48
28	Mutation in <i>sco</i> affects cytochrome <i>c</i> assembly and alters oxidative stress resistance in <i>Agrobacterium tumefaciens</i> . FEMS Microbiology Letters, 2009, 293, 122-129.	1.8	14
29	Mini-Tn <i>7</i> vectors as genetic tools for gene cloning at a single copy number in an industrially important and phytopathogenic bacteria, <i>Xanthomonas</i> spp FEMS Microbiology Letters, 2009, 298, 111-117.	1.8	28
30	Physiological and Expression Analyses of Agrobacterium tumefaciens trxA , Encoding Thioredoxin. Journal of Bacteriology, 2007, 189, 6477-6481.	2.2	8
31	Multiple Superoxide Dismutases in Agrobacterium tumefaciens : Functional Analysis, Gene Regulation, and Influence on Tumorigenesis. Journal of Bacteriology, 2007, 189, 8807-8817.	2.2	40
32	ohrR and ohr Are the Primary Sensor/Regulator and Protective Genes against Organic Hydroperoxide Stress in Agrobacterium tumefaciens. Journal of Bacteriology, 2006, 188, 842-851.	2.2	67
33	Agrobacterium tumefaciens soxR Is Involved in Superoxide Stress Protection and Also Directly Regulates Superoxide-Inducible Expression of Itself and a Target Gene. Journal of Bacteriology, 2006, 188, 8669-8673.	2.2	22
34	OxyR mediated compensatory expression betweenahpCandkatAand the significance ofahpCin protection from hydrogen peroxide inXanthomonas campestris. FEMS Microbiology Letters, 2005, 249, 73-78.	1.8	40
35	Important Role for Methionine Sulfoxide Reductase in the Oxidative Stress Response of Xanthomonas campestris pv. phaseoli. Journal of Bacteriology, 2005, 187, 5831-5836.	2.2	25
36	Genetic and physiological analysis of the major OxyR-regulated katA from Xanthomonas campestris pv. phaseoli. Microbiology (United Kingdom), 2005, 151, 597-605.	1.8	23

#	Article	IF	CITATIONS
37	The role of a bifunctional catalase-peroxidase KatA in protection ofAgrobacterium tumefaciensfrom menadione toxicity. FEMS Microbiology Letters, 2004, 232, 217-223.	1.8	26
38	Atypical Adaptive and Cross-Protective Responses Against Peroxide Killing in a Bacterial Plant Pathogen, Agrobacterium tumefaciens. Current Microbiology, 2003, 47, 323-326.	2.2	14
39	Induction of peroxide and superoxide protective enzymes and physiological cross-protection against peroxide killing by a superoxide generator inVibrio harveyi. FEMS Microbiology Letters, 2003, 221, 89-95.	1.8	24
40	The oxyR from Agrobacterium tumefaciens: evaluation of its role in the regulation of catalase and peroxide responses. Biochemical and Biophysical Research Communications, 2003, 304, 41-47.	2.1	40
41	A Suppressor of the Menadione-Hypersensitive Phenotype of a Xanthomonas campestris pv. phaseoli oxyR Mutant Reveals a Novel Mechanism of Toxicity and the Protective Role of Alkyl Hydroperoxide Reductase. Journal of Bacteriology, 2003, 185, 1734-1738.	2.2	8
42	Evaluation of the roles that alkyl hydroperoxide reductase and Ohr play in organic peroxide-induced gene expression and protection against organic peroxides in Xanthomonas campestris. Biochemical and Biophysical Research Communications, 2002, 299, 177-182.	2.1	23
43	The repressor for an organic peroxide-inducible operon is uniquely regulated at multiple levels. Molecular Microbiology, 2002, 44, 793-802.	2.5	35
44	Unusual adaptive, cross protection responses and growth phase resistance against peroxide killing in a bacterial shrimp pathogen, Vibrio harveyi. FEMS Microbiology Letters, 2001, 200, 111-116.	1.8	3
45	Catalase has a novel protective role against electrophile killing of Xanthomonas. Microbiology (United Kingdom), 2001, 147, 491-498.	1.8	6
46	Bacterial Ohr and OsmC paralogues define two protein families with distinct functions and patterns of expression. Microbiology (United Kingdom), 2001, 147, 1775-1782.	1.8	97
47	A Xanthomonas Alkyl Hydroperoxide Reductase Subunit C (ahpC) Mutant Showed an Altered Peroxide Stress Response and Complex Regulation of the Compensatory Response of Peroxide Detoxification Enzymes. Journal of Bacteriology, 2000, 182, 6845-6849.	2.2	59
48	Expression analysis and characterization of the mutant of a growth-phase- and starvation-regulated monofunctional catalase gene from Xanthomonas campestris pv. phaseoli. Gene, 2000, 241, 259-265.	2.2	29
49	Induced adaptive and cross-protection responses against oxidative stress killing in a bacterial phytopathogen, Xanthomonas oryzae pv. oryzae. FEMS Microbiology Letters, 1997, 146, 217-222.	1.8	2
50	Regulation of the oxidative stress protective enzymes, catalase and superoxide dismutase in Xanthomonas — a review. Gene, 1996, 179, 33-37.	2.2	60