
Katri Rankinen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1793955/publications.pdf Version: 2024-02-01

KATDI RANKINEN

#	Article	IF	CITATIONS
1	Assessing multiple stressor effects to inform climate change management responses in three European catchments. Inland Waters, 2022, 12, 94-106.	2.2	7
2	Concentration of organic carbon in Finnish catchments and variables involved in its variations. Journal of Environmental Management, 2022, 302, 113981.	7.8	1
3	Land Use Change to Reduce Freshwater Nitrogen and Phosphorus will Be Effective Even with Projected Climate Change. Water (Switzerland), 2022, 14, 829.	2.7	4
4	Nutrient Load Mitigation with Wintertime Cover as Estimated by the INCA Model. Water (Switzerland), 2021, 13, 450.	2.7	5
5	Framework to Study the Effects of Climate Change on Vulnerability of Ecosystems and Societies: Case Study of Nitrates in Drinking Water in Southern Finland. Water (Switzerland), 2021, 13, 472.	2.7	3
6	Developing a spatially explicit modelling and evaluation framework for integrated carbon sequestration and biodiversity conservation: Application in southern Finland. Science of the Total Environment, 2021, 775, 145847.	8.0	18
7	Sources and sinks of greenhouse gases in the landscape: Approach for spatially explicit estimates. Science of the Total Environment, 2021, 781, 146668.	8.0	9
8	Nordic Bioeconomy Pathways: Future narratives for assessment of water-related ecosystem services in agricultural and forest management. Ambio, 2020, 49, 1710-1721.	5.5	22
9	Comparing nutrient reference concentrations in Nordic countries with focus on lowland rivers. Ambio, 2020, 49, 1771-1783.	5.5	8
10	Potential impacts of a future Nordic bioeconomy on surface water quality. Ambio, 2020, 49, 1722-1735.	5.5	31
11	Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nature Ecology and Evolution, 2020, 4, 1060-1068.	7.8	336
12	Ecosystem Services Related to Carbon Cycling – Modeling Present and Future Impacts in Boreal Forests. Frontiers in Plant Science, 2019, 10, 343.	3.6	31
13	The future depends on what we do today – Projecting Europe's surface water quality into three different future scenarios. Science of the Total Environment, 2019, 668, 470-484.	8.0	31
14	Abating N in Nordic agriculture - Policy, measures and way forward. Journal of Environmental Management, 2019, 236, 674-686.	7.8	27
15	Identifying multiple stressors that influence eutrophication in a Finnish agricultural river. Science of the Total Environment, 2019, 658, 1278-1292.	8.0	27
16	Review and assessment of nitrate reduction in groundwater in the Baltic Sea Basin. Journal of Hydrology: Regional Studies, 2017, 12, 50-68.	2.4	43
17	Nitrogen fertilization of grass leys: Yield production and risk of N leaching. Agriculture, Ecosystems and Environment, 2016, 230, 341-352.	5.3	20
18	An INCA model for pathogens in rivers and catchments: Model structure, sensitivity analysis and application to the River Thames catchment, UK. Science of the Total Environment, 2016, 572, 1601-1610.	8.0	31

Katri Rankinen

#	Article	IF	CITATIONS
19	The INCA-Pathogens model: An application to the Loimijoki River basin in Finland. Science of the Total Environment, 2016, 572, 1611-1621.	8.0	12
20	The INtegrated CAtchment model of phosphorus dynamics (INCA-P): Description and demonstration of new model structure and equations. Environmental Modelling and Software, 2016, 83, 356-386.	4.5	42
21	Influence of climate and land use changes on nutrient fluxes from Finnish rivers to the Baltic Sea. Agriculture, Ecosystems and Environment, 2016, 216, 100-115.	5.3	43
22	Ecological recycling agriculture can reduce inorganic nitrogen losses – model results from three Finnish catchments. Agricultural Systems, 2015, 133, 167-176.	6.1	12
23	ESLab application to a boreal watershed in southern Finland: preparing for a virtual research environment of ecosystem services. Landscape Ecology, 2015, 30, 561-577.	4.2	8
24	Impacts of agri-environmental policy on land use and nitrogen leaching in Finland. Environmental Science and Policy, 2015, 50, 130-144.	4.9	11
25	Phosphorus and nitrogen fluxes carried by 21 Finnish agricultural rivers in 1985–2006. Environmental Monitoring and Assessment, 2015, 187, 216.	2.7	20
26	Comparison of impacts of human activities and climate change on water quantity and quality in Finnish agricultural catchments. Landscape Ecology, 2015, 30, 415-428.	4.2	20
27	Valuation of nitrogen retention as an ecosystem service on a catchment scale. Hydrology Research, 2014, 45, 411-424.	2.7	6
28	Reducing uncertainty in the calibration and validation of the INCA-N model by using soft data. Hydrology Research, 2014, 45, 73-88.	2.7	6
29	Technical Note: Alternative in-stream denitrification equation for the INCA-N model. Hydrology and Earth System Sciences, 2014, 18, 1467-1473.	4.9	3
30	Impacts and adaptation options of climate change on ecosystem services in Finland: a model based study. Current Opinion in Environmental Sustainability, 2013, 5, 26-40.	6.3	40
31	Climate change adaptation in arable land use, and impact on nitrogen load at catchment scale in northern agriculture. Agricultural and Food Science, 2013, 22, 342-355.	0.9	18
32	An assessment of the fine sediment dynamics in an upland river system: INCA-Sed modifications and implications for fisheries. Science of the Total Environment, 2010, 408, 2555-2566.	8.0	61
33	Application of catchment scale sediment delivery model INCA-Sed to four small study catchments in Finland. Catena, 2010, 83, 64-75.	5.0	15
34	Simulated nitrogen leaching patterns and adaptation to climate change in two Finnish river basins with contrasting land use and climatic conditions. Hydrology Research, 2009, 40, 177-186.	2.7	3
35	Using phenological information derived from MODIS-data to aid nutrient modeling. , 2007, , .		3
36	An application of the GLUE methodology for estimating the parameters of the INCA-N model. Science of the Total Environment, 2006, 365, 123-139.	8.0	49

Katri Rankinen

#	Article	IF	CITATIONS
37	Assessment of water protection targets for agricultural nutrient loading in Finland. Journal of Hydrology, 2005, 304, 251-260.	5.4	71
38	Integrated Nitrogen Modeling in a Boreal Forestry Dominated River Basin: N Fluxes and Retention in Lakes and Peatlands. Water, Air and Soil Pollution, 2004, 4, 113-123.	0.8	8
39	Integrated Nitrogen and Flow Modelling (INCA) in a Boreal River Basin Dominated by Forestry: Scenarios of Environmental Change. Water, Air and Soil Pollution, 2004, 4, 161-174.	0.8	4
40	Integrated Nitrogen and Flow Modelling (INCA) in a Boreal River Basin Dominated by Forestry: Scenarios of Environmental Change. , 2004, , 161-174.		3
41	Sensitivity of soil acidification model to deposition and forest growth. Ecological Modelling, 2000, 135, 311-325.	2.5	8
42	The role of bacteria in the nutrient exchange between sediment and water in a flow-through system. Microbial Ecology, 1995, 29, 129-144.	2.8	22