
Lipeng Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1793833/publications.pdf Version: 2024-02-01

LIDENC 7HANC

#	Article	IF	CITATIONS
1	Mechanisms of Oxygen Reduction Reaction on Nitrogen-Doped Graphene for Fuel Cells. Journal of Physical Chemistry C, 2011, 115, 11170-11176.	1.5	1,235
2	BCN Graphene as Efficient Metalâ€Free Electrocatalyst for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2012, 51, 4209-4212.	7.2	1,119
3	N-doped graphene as catalysts for oxygen reduction and oxygen evolution reactions: Theoretical considerations. Journal of Catalysis, 2014, 314, 66-72.	3.1	537
4	Design Principles for Heteroatomâ€Doped Carbon Nanomaterials as Highly Efficient Catalysts for Fuel Cells and Metal–Air Batteries. Advanced Materials, 2015, 27, 6834-6840.	11.1	490
5	Catalytic Mechanisms of Sulfur-Doped Graphene as Efficient Oxygen Reduction Reaction Catalysts for Fuel Cells. Journal of Physical Chemistry C, 2014, 118, 3545-3553.	1.5	373
6	Effect of Microstructure of Nitrogen-Doped Graphene on Oxygen Reduction Activity in Fuel Cells. Langmuir, 2012, 28, 7542-7550.	1.6	279
7	Role of lattice defects in catalytic activities of graphene clusters for fuel cells. Physical Chemistry Chemical Physics, 2015, 17, 16733-16743.	1.3	181
8	Design Principles for Covalent Organic Frameworks as Efficient Electrocatalysts in Clean Energy Conversion and Green Oxidizer Production. Advanced Materials, 2017, 29, 1606635.	11.1	167
9	Catalytic Mechanisms and Design Principles for Singleâ€Atom Catalysts in Highly Efficient CO ₂ Conversion. Advanced Energy Materials, 2019, 9, 1902625.	10.2	167
10	Guiding Principles for Designing Highly Efficient Metalâ€Free Carbon Catalysts. Advanced Materials, 2019, 31, e1805252.	11.1	110
11	Atomic-scale control of magnetic anisotropy via novel spin–orbit coupling effect in La _{2/3} Sr _{1/3} MnO ₃ /SrIrO ₃ superlattices. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6397-6402.	3.3	108
12	Phosphorus Regulated Cobalt Oxide@Nitrogenâ€Doped Carbon Nanowires for Flexible Quasiâ€Solidâ€State Supercapacitors. Small, 2020, 16, e1906458.	5.2	90
13	Self-templating synthesis of heteroatom-doped large-scalable carbon anodes for high-performance lithium-ion batteries. Inorganic Chemistry Frontiers, 2022, 9, 1058-1069.	3.0	72
14	Full color carbon dots through surface engineering for constructing white light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 2212-2218.	2.7	69
15	Topological Defectâ€Rich Carbon as a Metalâ€Free Cathode Catalyst for Highâ€Performance Li O ₂ Batteries. Advanced Energy Materials, 2021, 11, 2101390.	10.2	60
16	Atomic Plane-Vacancy Engineering of Transition-Metal Dichalcogenides with Enhanced Hydrogen Evolution Capability. ACS Applied Materials & Interfaces, 2019, 11, 25264-25270.	4.0	51
17	Crâ€Doped CoP Nanorod Arrays as Highâ€Performance Hydrogen Evolution Reaction Catalysts at High Current Density. Small, 2021, 17, e2100832.	5.2	48
18	Photoluminescence mechanism and applications of Zn-doped carbon dots. RSC Advances, 2018, 8, 17254-17262.	1.7	28

LIPENG ZHANG

#	Article	IF	CITATIONS
19	A universal descriptor based on p _z -orbitals for the catalytic activity of multi-doped carbon bifunctional catalysts for oxygen reduction and evolution. Nanoscale, 2020, 12, 19375-19382.	2.8	28
20	Catalytic mechanism and design principle of coordinately unsaturated single metal atom-doped covalent triazine frameworks with high activity and selectivity for CO ₂ electroreduction. Journal of Materials Chemistry A, 2021, 9, 3555-3566.	5.2	26
21	Robust Th-MOF-Supported Semirigid Single-Metal-Site Catalyst for an Efficient Acidic Oxygen Evolution Reaction. ACS Catalysis, 2022, 12, 9101-9113.	5.5	25
22	Sodium Metal Anodes with Selfâ€Correction Function Based on Fluorine‣uperdoped CNTs/Cellulose Nanofibrils Composite Paper. Advanced Functional Materials, 2022, 32, .	7.8	24
23	Multi-color carbon dots for white light-emitting diodes. RSC Advances, 2019, 9, 9700-9708.	1.7	22
24	Ultraâ€High Fluorine Enhanced Homogeneous Nucleation of Lithium Metal on Stepped Carbon Nanosheets with Abundant Edge Sites. Advanced Energy Materials, 2022, 12, .	10.2	22
25	Functionally Graded Gecko Setae and the Biomimics with Robust Adhesion and Durability. ACS Applied Polymer Materials, 2020, 2, 2658-2666.	2.0	18
26	Disperse Multimetal Atom-Doped Carbon as Efficient Bifunctional Electrocatalysts for Oxygen Reduction and Evolution Reactions: Design Strategies. Journal of Physical Chemistry C, 2020, 124, 27387-27395.	1.5	16
27	Rational design of boron-containing co-doped graphene as highly efficient electro-catalysts for the nitrogen reduction reaction. Journal of Materials Chemistry A, 2021, 9, 24590-24599.	5.2	14
28	Synthesis of Highly Fluorescent Yellowâ€Green Nâ€Doped Carbon Nanorings for pH Variation Detection and Bioimaging. Particle and Particle Systems Characterization, 2018, 35, 1800276.	1.2	10
29	Nickel chalcogenides as selective ethanol oxidation electro-catalysts and their structure–performance relationships. Chemical Communications, 2022, 58, 2496-2499.	2.2	9
30	Graphene-covered transition metal halide molecules as efficient and durable electrocatalysts for oxygen reduction and evolution reactions. Physical Chemistry Chemical Physics, 2019, 21, 23094-23101.	1.3	8
31	Oxygen vacancy formation energies in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>PbTiO</mml:mi><mr superlattice. Physical Review Materials, 2018, 2, .</mr </mml:msub></mml:mrow></mml:math 	nl :ດາ໑ >3 </td <td>ms:i:mn><!--</td--></td>	m s:i: mn> </td
32	Insights into the Effect of Precursors on the FeP-Catalyzed Hydrogen Evolution Reaction. Inorganic Chemistry, 2022, , .	1.9	8
33	Amorphous palladium-based alloy nanoparticles as highly active electrocatalysts for ethanol oxidation. Chemical Communications, 2022, 58, 4488-4491.	2.2	7
34	Tunable one-dimensional electron gas carrier densities at nanostructured oxide interfaces. Scientific Reports, 2016, 6, 25452.	1.6	6
35	Detrimental Effects and Prevention of Acidic Electrolytes on Oxygen Reduction Reaction Catalytic Performance of Heteroatom-Doped Graphene Catalysts. Frontiers in Materials, 2019, 6, .	1.2	6
36	Dimensional control of defect dynamics in perovskite oxide superlattices. Physical Review Materials, 2018, 2, .	0.9	3

#	Article	IF	CITATIONS
37	Hole-punching for enhancing electrocatalytic activities of 2D graphene electrodes: Less is more. Journal of Chemical Physics, 2020, 153, 074701.	1.2	2

Topological Defectâ€Rich Carbon as a Metalâ€Free Cathode Catalyst for Highâ€Performance
Liâ€CO₂ Batteries (Adv. Energy Mater. 30/2021). Advanced Energy Materials, 2021, 11, 2170120.