
Ganesan Narsimhan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1793130/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of thermal treatment on interfacial properties of β-lactoglobulin. Journal of Colloid and Interface Science, 2005, 285, 100-109.	9.4	148
2	Analysis of drop size distributions in lean liquid-liquid dispersions. AICHE Journal, 1980, 26, 991-1000.	3.6	126
3	Designing carbohydrate nanoparticles for prolonged efficacy of antimicrobial peptide. Journal of Controlled Release, 2011, 150, 150-156.	9.9	126
4	Breakage functions for droplets in agitated liquid-liquid dispersions. AICHE Journal, 1984, 30, 457-467.	3.6	123
5	Effect of surface concentration on secondary and tertiary conformational changes of lysozyme adsorbed on silica nanoparticles. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2008, 1784, 1694-1701.	2.3	90
6	Characterization of Secondary and Tertiary Conformational Changes of β-Lactoglobulin Adsorbed on Silica Nanoparticle Surfaces. Langmuir, 2008, 24, 4989-4998.	3.5	85
7	Coalescence of Protein-Stabilized Emulsions in a High-Pressure Homogenizer. Journal of Colloid and Interface Science, 1997, 192, 1-15.	9.4	83
8	Role of Proteins on Formation, Drainage, and Stability of Liquid Food Foams. Annual Review of Food Science and Technology, 2018, 9, 45-63.	9.9	79
9	Foam fractionation of globular proteins. Biotechnology and Bioengineering, 1990, 36, 947-959.	3.3	78
10	Effect of composition and pore structure on binding energy and effective diffusivity of moisture in porous food. Journal of Food Engineering, 1992, 15, 187-208.	5.2	76
11	Characterization of gelation time and texture of gelatin and gelatin–polysaccharide mixed gels. Food Hydrocolloids, 2003, 17, 871-883.	10.7	73
12	Adsorption Dynamics of Native and Pentylated Bovine Serum Albumin at Air–Water Interfaces: Surface Concentration/ Surface Pressure Measurements. Journal of Colloid and Interface Science, 1997, 191, 312-325.	9.4	71
13	Adsorption Dynamics of α-Lactalbumin and β-Lactoglobulin at Air–Water Interfaces. Journal of Colloid and Interface Science, 1999, 214, 129-142.	9.4	69
14	A new approach for the prediction of the rate of nucleation in liquids. Journal of Colloid and Interface Science, 1989, 128, 549-565.	9.4	67
15	Drop Coalescence during Emulsion Formation in a High-Pressure Homogenizer for Tetradecane-in-Water Emulsion Stabilized by Sodium Dodecyl Sulfate. Journal of Colloid and Interface Science, 2001, 238, 420-432.	9.4	66
16	Kinetics of adsorption of globular proteins at an air-water interface. Biotechnology Progress, 1992, 8, 187-196.	2.6	63
17	Effect of bubble size distribution on the enrichment and collapse in foams. Langmuir, 1986, 2, 494-508.	3.5	61
18	Hydrodynamics, enrichment, and collapse in foams. Langmuir, 1986, 2, 230-238.	3.5	57

GANESAN NARSIMHAN

#	Article	IF	CITATIONS
19	A model for unsteady state drainage of a static foam. Journal of Food Engineering, 1991, 14, 139-165.	5.2	55
20	Adsorption dynamics and interfacial properties of α-lactalbumin in native and molten globule state conformation at air–water interface. Food Hydrocolloids, 2001, 15, 303-313.	10.7	52
21	Interfacial Dilatational Elasticity and Viscosity of β-Lactoglobulin at Airâ^'Water Interface Using Pulsating Bubble Tensiometry. Langmuir, 2005, 21, 4482-4489.	3.5	49
22	Effect of processing parameters on foam formation using a continuous system with a mechanical whipper. Journal of Food Engineering, 2008, 88, 65-74.	5.2	49
23	The Brownian coagulation of aerosols over the entire range of Knudsen numbers: Connection between the sticking probability and the interaction forces. Journal of Colloid and Interface Science, 1985, 104, 344-369.	9.4	46
24	Characterization of Interactions between Curcumin and Different Types of Lipid Bilayers by Molecular Dynamics Simulation. Journal of Physical Chemistry B, 2018, 122, 2341-2354.	2.6	45
25	Adsorption Dynamics of Native and Alkylated Derivatives of Bovine Serum Albumin at Air–Water Interfaces. Journal of Colloid and Interface Science, 1996, 178, 348-357.	9.4	44
26	Effects of kinetics of adsorption and coalescence on continuous foam concentration of proteins: Comparison of experimental results with model predictions. , 2000, 51, 384-398.		44
27	Potential of mean force for insertion of antimicrobial peptide melittin into a pore in mixed DOPC/DOPG lipid bilayer by molecular dynamics simulation. Journal of Chemical Physics, 2017, 146, 155101.	3.0	43
28	Model for drop coalescence in a locally isotropic turbulent flow field. Journal of Colloid and Interface Science, 2004, 272, 197-209.	9.4	41
29	Adsorption and Exchange of β-Lactoglobulin onto Spread Monoglyceride Monolayers at the Airâ^'Water Interface. Langmuir, 2000, 16, 1216-1225.	3.5	38
30	Foam fractionation of proteins and enzymes: I. Applications. Enzyme and Microbial Technology, 1990, 12, 232-233.	3.2	37
31	Methodology for identification of pore forming antimicrobial peptides from soy protein subunits β-conglycinin and glycinin. Peptides, 2016, 85, 27-40.	2.4	37
32	Foam fractionation of proteins and enzymes. II. Performance and modelling. Enzyme and Microbial Technology, 1990, 12, 315-316.	3.2	35
33	The effect of surface charge and partition coefficient on the chemical stability of solutes in O/W emulsions. Journal of Pharmaceutical Sciences, 2002, 91, 559-570.	3.3	35
34	Characterization of fish oil in water emulsion produced by layer by layer deposition of soy β-conglycinin and high methoxyl pectin. Food Hydrocolloids, 2016, 52, 678-689.	10.7	34
35	Maximum disjoining pressure in protein stabilized concentrated oil-in-water emulsions. Colloids and Surfaces, 1992, 62, 41-55.	0.9	33
36	Interactions of Spread Lecithin Monolayers with Bovine Serum Albumin in Aqueous Solution. Langmuir, 1997, 13, 4710-4715.	3.5	33

GANESAN NARSIMHAN

#	Article	IF	CITATIONS
37	Lowâ€field NMR: A tool for studying protein aggregation. Journal of the Science of Food and Agriculture, 2007, 87, 2207-2216.	3.5	32
38	Characterization of protein stabilized foam formed in a continuous shear mixing apparatus. Journal of Food Engineering, 2008, 88, 456-465.	5.2	32
39	Effect of hydrolysis of soy β-conglycinin on the oxidative stability of O/WÂemulsions. Food Hydrocolloids, 2014, 35, 429-443.	10.7	32
40	Model for Plateau border drainage of power-law fluid with mobile interface and its application to foam drainage. Journal of Colloid and Interface Science, 2006, 300, 327-337.	9.4	31
41	Characterization of antimicrobial activity against Listeria and cytotoxicity of native melittin and its mutant variants. Colloids and Surfaces B: Biointerfaces, 2016, 143, 194-205.	5.0	31
42	Molecular Dynamics Study of Pore Formation by Melittin in a 1,2-Dioleoyl- <i>sn</i> -glycero-3-phosphocholine and 1,2-Di(9 <i>Z</i> -octadecenoyl)- <i>sn</i> -glycero-3-phospho-(1â€2- <i>rac</i> -glycerol) Mixed Lipid Bilayer. Industrial & Engineering Chemistry Research, 2015, 54, 10275-10283.	3.7	29
43	Prediction of swelling behavior of crosslinked maize starch suspensions. Carbohydrate Polymers, 2018, 199, 331-340.	10.2	28
44	Monte Carlo simulation of brownian coagulation over the entire range of particle sizes from near molecular to colloidal: Connection between collision efficiency and interparticle forces. Journal of Colloid and Interface Science, 1985, 107, 174-193.	9.4	27
45	Investigation of the interaction of amyloid β peptide (11–42) oligomers with a 1-palmitoyl-2-oleoyl- <i>sn-glycero</i> -3-phosphocholine (POPC) membrane using molecular dynamics simulation. Physical Chemistry Chemical Physics, 2018, 20, 6817-6829.	2.8	27
46	A surface equation of state for globular proteins at the air-water interface. Journal of Colloid and Interface Science, 1991, 146, 169-178.	9.4	25
47	Effect of Cross-Linking of Interfacial Sodium Caseinate by Natural Processing on the Oxidative Stability of Oil-in-Water (O/W) Emulsions. Journal of Agricultural and Food Chemistry, 2014, 62, 2822-2829.	5.2	25
48	Protein adsorption induced bridging flocculation: the dominant entropic pathway for nano-bio complexation. Nanoscale, 2016, 8, 3326-3336.	5.6	24
49	Rheological methods in food process engineering. Journal of Food Engineering, 1994, 23, 249-250.	5.2	23
50	Effect of Coalescence on the Performance of a Continuous Foam Fractionation Column. Separation Science and Technology, 1992, 27, 937-953.	2.5	22
51	A mechanistic model for swelling kinetics of waxy maize starch suspension. Journal of Food Engineering, 2018, 222, 237-249.	5.2	22
52	Characterization of Interfacial Rheology of Protein-Stabilized Air–Liquid Interfaces. Food Engineering Reviews, 2016, 8, 367-392.	5.9	21
53	Effect of physicochemical properties of peptides from soy protein on their antimicrobial activity. Peptides, 2017, 94, 10-18.	2.4	21
54	Stability of thin stagnant film on a solid surface with a viscoelastic air–liquid interface. Journal of Colloid and Interface Science, 2005, 291, 296-302.	9.4	20

#	Article	IF	CITATIONS
55	Pore formation in 1,2-dimyristoyl-sn-glycero-3-phosphocholine/cholesterol mixed bilayers by low concentrations of antimicrobial peptide melittin. Colloids and Surfaces B: Biointerfaces, 2014, 123, 419-428.	5.0	20
56	Synergistic effect of low power ultrasonication on antimicrobial activity of melittin against Listeria monocytogenes. LWT - Food Science and Technology, 2017, 75, 578-581.	5.2	20
57	Evolution of liquid holdup profile in a standing protein stabilized foam. Journal of Colloid and Interface Science, 2004, 280, 224-233.	9.4	19
58	Rupture of thin stagnant films on a solid surface due to random thermal and mechanical perturbations. Journal of Colloid and Interface Science, 2005, 287, 624-633.	9.4	19
59	Effect of immobilization on the antimicrobial activity of a cysteine-terminated antimicrobial Peptide Cecropin P1 tethered to silica nanoparticle against E. coli O157:H7 EDL933. Colloids and Surfaces B: Biointerfaces, 2017, 156, 305-312.	5.0	18
60	Nucleation and growth of pores in 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC) / cholesterol bilayer by antimicrobial peptides melittin, its mutants and cecropin P1. Colloids and Surfaces B: Biointerfaces, 2019, 173, 121-127.	5.0	18
61	Drainage of particle stabilized foam film. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 495, 20-29.	4.7	16
62	ON RUPTURE OF A THINNING FILM OF NON-NEWTONIAN POWER LAW LIQUIDâ€. Chemical Engineering Communications, 1992, 111, 161-175.	2.6	15
63	Effect of Contaminant on Adsorption of Whey Proteins at the Airâ^'Water Interface. Journal of Agricultural and Food Chemistry, 1998, 46, 2490-2498.	5.2	15
64	Particulate structure of phytoglycogen studied using β-amylolysis. Carbohydrate Polymers, 2015, 132, 582-588.	10.2	15
65	Synergistic effect of low power ultrasonication on antimicrobial activity of cecropin P1 against E. coli in food systems. LWT - Food Science and Technology, 2018, 96, 175-181.	5.2	15
66	Enhanced solubility and antimicrobial activity of alamethicin in aqueous solution by complexation with Î ³ -cyclodextrin. Journal of Functional Foods, 2018, 40, 700-706.	3.4	14
67	Understanding the antimicrobial activity of water soluble γ-cyclodextrin/alamethicin complex. Colloids and Surfaces B: Biointerfaces, 2018, 172, 451-458.	5.0	14
68	Effect of egg yolk lipids on structure and properties of wheat starch in steamed bread. Journal of Cereal Science, 2019, 86, 77-85.	3.7	14
69	Rupture of equilibrium foam films due to random thermal and mechanical perturbations. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 282-283, 24-36.	4.7	13
70	Preparation and Characterization of Ternary Antimicrobial Films of β-Cyclodextrin/Allyl Isothiocyanate/Polylactic Acid for the Enhancement of Long-Term Controlled Release. Materials, 2017, 10, 1210.	2.9	13
71	A Model for Continuous Foam Concentration of Proteins: Effects of Kinetics of Adsorption of Proteins and Coalescence of Foam. Separation Science and Technology, 1995, 30, 847-881.	2.5	12
72	Stability of thin emulsion film between two oil phases with a viscoelastic liquid–liquid interface. Journal of Colloid and Interface Science, 2009, 330, 494-500.	9.4	12

GANESAN NARSIMHAN

#	Article	IF	CITATIONS
73	Analysis of creaming and formation of foam layer in aerated liquid. Journal of Colloid and Interface Science, 2010, 345, 566-572.	9.4	12
74	Effect of Steam Sterilization on the Rheology of Polymer Solutions. Pharmaceutical Development and Technology, 2003, 8, 219-228.	2.4	11
75	Ostwald ripening of oil drops in a micellar solution. Chemical Engineering Science, 2001, 56, 4225-4231.	3.8	10
76	Effect of Thermal Behavior of β-Lactoglobulin on the Oxidative Stability of Menhaden Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 2013, 61, 1954-1967.	5.2	10
77	Solubility of globular proteins in polysaccharide solutions. Biotechnology Progress, 1991, 7, 54-59.	2.6	9
78	Swelling kinetics of rice and potato starch suspensions. Journal of Food Process Engineering, 2020, 43, e13353.	2.9	9
79	A mechanistic model for baking of leavened aerated food. Journal of Food Engineering, 2014, 143, 80-89.	5.2	8
80	Effect of contact surface, plasticized and crosslinked zein films are cast on, on the distribution of dispersive and polar surface energy using the Van Oss method of deconvolution. Journal of Food Engineering, 2019, 263, 262-271.	5.2	8
81	Effect of mass transfer on droplet breakup in stirred liquid-liquid dispersions. AICHE Journal, 1987, 33, 1899-1902.	3.6	7
82	Structural Changes in Xanthan Gum Solutions During Steam Sterilization for Sterile Preparations. Pharmaceutical Development and Technology, 2007, 12, 159-167.	2.4	7
83	A mechanistic model for baking of unleavened aerated food. LWT - Food Science and Technology, 2013, 53, 146-155.	5.2	7
84	A Model for the Prediction of Precipitation Curves for Globular Proteins with Nonionic Polymers as the Precipitating Agent. Separation Science and Technology, 1996, 31, 1777-1804.	2,5	6
85	Coarse grain molecular dynamics simulation for the prediction of tertiary conformation of lysozyme adsorbed on silica surface. Molecular Simulation, 2009, 35, 974-985.	2.0	6
86	Effect of interaction with coesite silica on the conformation of Cecropin P1 using explicit solvent molecular dynamics simulation. Journal of Chemical Physics, 2013, 138, 045103.	3.0	6
87	A novel approach to the theory of homogeneous and heterogeneous nucleation. Advances in Colloid and Interface Science, 2015, 215, 13-27.	14.7	6
88	Impacts of Size and Deformability of β-Lactoglobulin Microgels on the Colloidal Stability and Volatile Flavor Release of Microgel-Stabilized Emulsions. Gels, 2018, 4, 79.	4.5	6
89	Effect of interfacial mobility on rupture of thin stagnant films on a solid surface due to random mechanical perturbations. Journal of Colloid and Interface Science, 2006, 298, 491-496.	9.4	5
90	Comparing inline extrusion viscosity for different operating conditions to offline capillary viscosity measurements. Journal of Food Process Engineering, 2020, 43, e13199.	2.9	5

#	Article	IF	CITATIONS
91	Prediction of the effect of sucrose on equilibrium swelling of starch suspensions. Journal of Food Engineering, 2021, 294, 110397.	5.2	5
92	Guidelines for Processing Emulsion-Based Foods. , 2019, , 435-501.		5
93	Rupture of Draining Foam Films Due to Random Pressure Fluctuations. Langmuir, 2007, 23, 2437-2443.	3.5	4
94	Methodology to predict the time-dependent storage modulus of starch suspensions during heating. Food Hydrocolloids, 2021, 113, 106463.	10.7	4
95	Complexation of 26-Mer Amylose with Egg Yolk Lipids with Different Numbers of Tails Using a Molecular Dynamics Simulation. Foods, 2021, 10, 2355.	4.3	2
96	Characterization of storage modulus of starch suspensions during the initial stages of pasting using Stokesian dynamics simulations. Food Hydrocolloids, 2021, 121, 107010.	10.7	1
97	Effect of Interdroplet Forces on Centrifugal Stability of Protein-Stabilized Concentrated Oil-in-Water Emulsions. ACS Symposium Series, 1993, , 229-245.	0.5	0
98	Characterisation of the effect of electrostatic interaction on the structure of Trp-cage using molecular dynamics simulation. Molecular Simulation, 2010, 36, 1086-1095.	2.0	0