## Shahriar Afkhami

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1793090/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Challenges of numerical simulation of dynamic wetting phenomena: a review. Current Opinion in Colloid and Interface Science, 2022, 57, 101523.                                                                                                                                                                | 7.4 | 12        |
| 2  | Effects of manufacturing parameters, heat treatment, and machining on the physical and mechanical properties of 13Cr10Ni1·7Mo2AlO·4MnO·4Si steel processed by laser powder bed fusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 832, 142402. | 5.6 | 19        |
| 3  | Thermomechanical simulation of the heat-affected zones in welded ultra-high strength steels:<br>Microstructure and mechanical properties. Materials and Design, 2022, 213, 110336.                                                                                                                            | 7.0 | 20        |
| 4  | Data related to the microstructural identification and analyzing the mechanical properties of<br>maraging stainless steel 13Cr10Ni1.7Mo2Al0.4Mn0.4Si (commercially known as CX) processed by laser<br>powder bed fusion method. Data in Brief, 2022, 41, 107856.                                              | 1.0 | 4         |
| 5  | Fatigue performance of stainless tool steel CX processed by laser powder bed fusion. Materials<br>Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022,<br>841, 143031.                                                                                             | 5.6 | 7         |
| 6  | Numerical simulation of superparamagnetic nanoparticle motion in blood vessels for magnetic drug delivery. Physical Review E, 2022, 106, .                                                                                                                                                                    | 2.1 | 2         |
| 7  | Effects of notch-load interactions on the mechanical performance of 3D printed tool steel 18Ni300.<br>Additive Manufacturing, 2021, 47, 102260.                                                                                                                                                               | 3.0 | 2         |
| 8  | Effects of manufacturing parameters and mechanical post-processing on stainless steel 316L<br>processed by laser powder bed fusion. Materials Science & Engineering A: Structural Materials:<br>Properties, Microstructure and Processing, 2021, 802, 140660.                                                 | 5.6 | 66        |
| 9  | Effects of TIG welding process on microstructure, electrical resistance and mechanical properties of Nichrome 8020. Metallic Materials, 2021, 54, 289-296.                                                                                                                                                    | 0.3 | 0         |
| 10 | Pore-scale direct numerical simulation of Haines jumps in a porous media model. European Physical<br>Journal: Special Topics, 2020, 229, 1785-1798.                                                                                                                                                           | 2.6 | 11        |
| 11 | Mechanical properties and microstructural evaluation of the heat-affected zone in ultra-high strength steels. Thin-Walled Structures, 2020, 157, 107072.                                                                                                                                                      | 5.3 | 42        |
| 12 | Editorial for Special Issue "Drop, Bubble and Particle Dynamics in Complex Fluids― Fluids, 2020, 5, 4.                                                                                                                                                                                                        | 1.7 | 0         |
| 13 | Challenges in nanoscale physics of wetting phenomena. European Physical Journal: Special Topics, 2020, 229, 1735-1738.                                                                                                                                                                                        | 2.6 | 4         |
| 14 | Effects of heat input on the mechanical properties of butt-welded high and ultra-high strength steels.<br>Engineering Structures, 2019, 198, 109460.                                                                                                                                                          | 5.3 | 75        |
| 15 | Effective parameters on the fatigue life of metals processed by powder bed fusion technique: A short review. Procedia Manufacturing, 2019, 36, 3-10.                                                                                                                                                          | 1.9 | 11        |
| 16 | Thin viscoelastic dewetting films of Jeffreys type subjected to gravity and substrate interactions.<br>European Physical Journal E, 2019, 42, 12.                                                                                                                                                             | 1.6 | 5         |
| 17 | Weldability of cold-formed high strength and ultra-high strength steels. Journal of Constructional Steel Research, 2019, 158, 86-98.                                                                                                                                                                          | 3.9 | 20        |
| 18 | Breakup of finite-size liquid filaments: Transition from no-breakup to breakup including substrate effects⋆. European Physical Journal E, 2019, 42, 18.                                                                                                                                                       | 1.6 | 9         |

SHAHRIAR AFKHAMI

| #  | Article                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Dynamics of an Ellipse-Shaped Meniscus on a Substrate-Supported Drop under an Electric Field. Fluids, 2019, 4, 200.                                                                                          | 1.7  | 2         |
| 20 | Fatigue characteristics of steels manufactured by selective laser melting. International Journal of Fatigue, 2019, 122, 72-83.                                                                               | 5.7  | 124       |
| 21 | Influence of thermal effects on stability of nanoscale films and filaments on thermally conductive substrates. Physics of Fluids, 2018, 30, .                                                                | 4.0  | 10        |
| 22 | Interaction of a pair of ferrofluid drops inÂaÂrotating magnetic field. Journal of Fluid Mechanics, 2018,<br>846, 121-142.                                                                                   | 3.4  | 20        |
| 23 | Direct numerical simulation of variable surface tension flows using a Volume-of-Fluid method.<br>Journal of Computational Physics, 2018, 352, 615-636.                                                       | 3.8  | 29        |
| 24 | Numerical simulations of nearly incompressible viscoelastic membranes. Computers and Fluids, 2018, 175, 36-47.                                                                                               | 2.5  | 2         |
| 25 | Simulations of microlayer formation in nucleate boiling. International Journal of Heat and Mass<br>Transfer, 2018, 127, 1271-1284.                                                                           | 4.8  | 37        |
| 26 | Utilizing the theory of critical distances in conjunction with crystal plasticity for low-cycle notch fatigue analysis of S960 MC high-strength steel. International Journal of Fatigue, 2018, 117, 257-273. | 5.7  | 18        |
| 27 | Transition in a numerical model of contact line dynamics and forced dewetting. Journal of Computational Physics, 2018, 374, 1061-1093.                                                                       | 3.8  | 41        |
| 28 | Substrate melting during laser heating of nanoscale metal films. International Journal of Heat and<br>Mass Transfer, 2017, 113, 237-245.                                                                     | 4.8  | 14        |
| 29 | Solutal Marangoni flows of miscible liquids drive transport without surface contamination. Nature Physics, 2017, 13, 1105-1110.                                                                              | 16.7 | 85        |
| 30 | Exploiting the Marangoni Effect To Initiate Instabilities and Direct the Assembly of Liquid Metal<br>Filaments. Langmuir, 2017, 33, 8123-8128.                                                               | 3.5  | 12        |
| 31 | Ferrofluids and magnetically guided superparamagnetic particles in flows: a review of simulations and modeling. Journal of Engineering Mathematics, 2017, 107, 231-251.                                      | 1.2  | 22        |
| 32 | Modeling Superparamagnetic Particles in Blood Flow for Applications in Magnetic Drug Targeting.<br>Fluids, 2017, 2, 29.                                                                                      | 1.7  | 26        |
| 33 | A numerical approach for the direct computation of flows including fluid-solid interaction:<br>Modeling contact angle, film rupture, and dewetting. Physics of Fluids, 2016, 28, .                           | 4.0  | 18        |
| 34 | On capillary self-focusing in a microfluidic system. Fluid Dynamics Research, 2016, 48, 061427.                                                                                                              | 1.3  | 0         |
| 35 | Interfacial dynamics of thin viscoelastic films and drops. Journal of Non-Newtonian Fluid Mechanics, 2016, 237, 26-38.                                                                                       | 2.4  | 13        |
| 36 | Interfacial deformation and jetting of a magnetic fluid. Computers and Fluids, 2016, 124, 149-156.                                                                                                           | 2.5  | 8         |

SHAHRIAR AFKHAMI

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | On the influence of initial geometry on the evolution of fluid filaments. Physics of Fluids, 2015, 27, .                                                                                                                        | 4.0 | 10        |
| 38 | Capillary focusing close to a topographic step: shape and instability of confined liquid filaments.<br>Microfluidics and Nanofluidics, 2015, 18, 911-917.                                                                       | 2.2 | 8         |
| 39 | A volume of fluid method for simulating fluid/fluid interfaces in contact with solid boundaries.<br>Journal of Computational Physics, 2015, 294, 243-257.                                                                       | 3.8 | 36        |
| 40 | Instability of Nano- and Microscale Liquid Metal Filaments: Transition from Single Droplet Collapse to<br>Multidroplet Breakup. Langmuir, 2015, 31, 13609-13617.                                                                | 3.5 | 15        |
| 41 | On the dewetting of liquefied metal nanostructures. Journal of Engineering Mathematics, 2015, 94, 5-18.                                                                                                                         | 1.2 | 3         |
| 42 | Interfacial instability of thin ferrofluid films under a magnetic field. Journal of Fluid Mechanics, 2014,<br>755, .                                                                                                            | 3.4 | 22        |
| 43 | Hierarchical Nanoparticle Ensembles Synthesized by Liquid Phase Directed Self-Assembly. Nano Letters, 2014, 14, 774-782.                                                                                                        | 9.1 | 40        |
| 44 | A volume-of-fluid formulation for the study of co-flowing fluids governed by the Hele-Shaw<br>equations. Physics of Fluids, 2013, 25, .                                                                                         | 4.0 | 14        |
| 45 | Numerical Simulation of Ejected Molten Metal Nanoparticles Liquified by Laser Irradiation: Interplay of Geometry and Dewetting. Physical Review Letters, 2013, 111, 034501.                                                     | 7.8 | 33        |
| 46 | Directed Assembly of One- and Two-Dimensional Nanoparticle Arrays from Pulsed Laser Induced<br>Dewetting of Square Waveforms. ACS Applied Materials & Interfaces, 2013, 5, 4450-4456.                                           | 8.0 | 26        |
| 47 | Comparison of Navier-Stokes simulations with long-wave theory: Study of wetting and dewetting.<br>Physics of Fluids, 2013, 25, 112103.                                                                                          | 4.0 | 18        |
| 48 | Obstructed Breakup of Slender Drops in a Microfluidic <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"<br/>display="inline"&gt;<mml:mi>T</mml:mi>Junction. Physical Review Letters, 2012, 108, 264502.</mml:math<br> | 7.8 | 93        |
| 49 | On the motion of superparamagnetic particles in magnetic drug targeting. Acta Mechanica, 2012, 223, 505-527.                                                                                                                    | 2.1 | 26        |
| 50 | Numerical investigation of elongated drops in a microfluidic T-junction. Physics of Fluids, 2011, 23, .                                                                                                                         | 4.0 | 72        |
| 51 | An experimental and numerical investigation of the dynamics of microconfined droplets in systems with one viscoelastic phase. Journal of Non-Newtonian Fluid Mechanics, 2011, 166, 52-62.                                       | 2.4 | 19        |
| 52 | Deformation of a hydrophobic ferrofluid droplet suspended in a viscous medium under uniform magnetic fields. Journal of Fluid Mechanics, 2010, 663, 358-384.                                                                    | 3.4 | 160       |
| 53 | A comparison of viscoelastic stress wakes for two-dimensional and three-dimensional Newtonian drop deformations in a viscoelastic matrix under shear. Physics of Fluids, 2009, 21, .                                            | 4.0 | 16        |
| 54 | Height functions for applying contact angles to 3D VOF simulations. International Journal for Numerical Methods in Fluids, 2009, 61, 827-847.                                                                                   | 1.6 | 70        |

SHAHRIAR AFKHAMI

| #  | Article                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | A mesh-dependent model for applying dynamic contact angles to VOF simulations. Journal of Computational Physics, 2009, 228, 5370-5389.                           | 3.8 | 190       |
| 56 | Influence of viscoelasticity on drop deformation and orientation in shear flow. Journal of<br>Non-Newtonian Fluid Mechanics, 2009, 156, 29-43.                   | 2.4 | 38        |
| 57 | Influence of viscoelasticity on drop deformation and orientation in shear flow. Part 2: Dynamics.<br>Journal of Non-Newtonian Fluid Mechanics, 2009, 156, 44-57. | 2.4 | 41        |
| 58 | Height functions for applying contact angles to 2D VOF simulations. International Journal for Numerical Methods in Fluids, 2008, 57, 453-472.                    | 1.6 | 85        |
| 59 | Numerical Investigation of the Influence of Viscoelasticity on Drop Deformation in Shear. AIP Conference Proceedings, 2008, , .                                  | 0.4 | 0         |
| 60 | Numerical Modeling of Ferrofluid Droplets in Magnetic Fields. AIP Conference Proceedings, 2008, , .                                                              | 0.4 | 4         |
| 61 | Field-induced motion of ferrofluid droplets through immiscible viscous media. Journal of Fluid<br>Mechanics, 2008, 610, 363-380.                                 | 3.4 | 86        |