List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1792978/publications.pdf Version: 2024-02-01

4

#	Article	IF	CITATIONS
1	Impact of Dynamic Traffic on Vehicle-to-Vehicle Visible Light Communication Systems. IEEE Systems Journal, 2022, 16, 3512-3521.	2.9	7
2	Ergodic capacity and error performance of spatial diversity UWOC systems over generalized gamma turbulence channels. Optics Communications, 2022, 505, 127476.	1.0	6
3	The BER Performance of the LDPC-Coded MPPM over Turbulence UWOC Channels. Photonics, 2022, 9, 349.	0.9	9
4	An experimental evaluation of a 3D visible light positioning system in an industrial environment with receiver tilt and multipath reflections. Optics Communications, 2021, 483, 126654.	1.0	10
5	A Heuristic Approach for Optical Transceiver Placement to Optimize SNR and Illuminance Uniformities of an Optical Body Area Network. Sensors, 2021, 21, 2943.	2.1	0
6	Optimum Device and Modulation Scheme Selection for Optical Wireless Communications. Journal of Lightwave Technology, 2021, 39, 2281-2287.	2.7	8
7	Impact of Vehicle Headlights Radiation Pattern on Dynamic Vehicular VLC Channel. Journal of Lightwave Technology, 2021, 39, 3162-3168.	2.7	23
8	Statistical channel modelling of dynamic vehicular visible light communication system. Vehicular Communications, 2021, 29, 100339.	2.7	9
9	Evaluation of a Switched Combining Based Distributed Antenna System (DAS) for Pedestrian-to-Vehicle Communications. IEEE Transactions on Vehicular Technology, 2021, 70, 11005-11010.	3.9	3
10	Vehicular Visible Light Positioning Using Receiver Diversity with Machine Learning. Electronics (Switzerland), 2021, 10, 3023.	1.8	3
11	Performance of Spatial Diversity DCO-OFDM in a Weak Turbulence Underwater Visible Light Communication Channel. Journal of Lightwave Technology, 2020, 38, 2271-2277.	2.7	31
12	Optical Antennas for Wavelength Division Multiplexing in Visible Light Communications beyond the Étendue Limit. Advanced Optical Materials, 2020, 8, 1901139.	3.6	29
13	Visible Light Communications for Industrial Applications—Challenges and Potentials. Electronics (Switzerland), 2020, 9, 2157.	1.8	50
14	Investigation of 3 dB Optical Intensity Spot Radius of Laser Beam under Scattering Underwater Channel. Sensors, 2020, 20, 422.	2.1	4
15	Transmitter and receiver technologies for optical wireless. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190182.	1.6	26
16	LDPC-Coded CAP with Spatial Diversity for UVLC Systems over Generalized-Gamma Fading Channel. Sensors, 2020, 20, 3378.	2.1	5
17	Precision indoor threeâ€dimensional visible light positioning using receiver diversity and multiâ€layer perceptron neural network. IET Optoelectronics, 2020, 14, 440-446.	1.8	9

18 The Statistical Temporal Properties of Vehicular Visible Light Communication Channel. , 2020, , .

#	Article	IF	CITATIONS
19	A Study of Yearly Sunlight Variance Effect on Vehicular Visible Light Communication for Emergency Service Vehicles. , 2020, , .		7
20	Study of MIMO m-CAP with Equalizer for a Band- Limited VLC System. , 2020, , .		0
21	Applications of Visible Light Communication for Distance Estimation: a Short Survey. , 2019, , .		2
22	Pedestrian and Cyclist Detection and Intent Estimation for Autonomous Vehicles: A Survey. Applied Sciences (Switzerland), 2019, 9, 2335.	1.3	56
23	Optical single carrier-interleaved frequency division multiplexing for visible light communication systems. Optik, 2019, 194, 162910.	1.4	7
24	Indoor Intruder Tracking Using Visible Light Communications. Sensors, 2019, 19, 4578.	2.1	10
25	Investigation of Complexity and Regulatory Role of Physiological Activities During a Pacing Exercise. IEEE Access, 2019, 7, 152334-152346.	2.6	1
26	Neural Network-Based Joint Spatial and Temporal Equalization for MIMO-VLC System. IEEE Photonics Technology Letters, 2019, 31, 821-824.	1.3	28
27	An Experimental Analysis of the Effect of Reflections on the Performance of Visible Light Positioning Systems in Warehouses. , 2019, , .		3
28	A Novel 3D Visible Light Positioning Method Using Received Signal Strength for Industrial Applications. Electronics (Switzerland), 2019, 8, 1311.	1.8	15
29	Dead-Zones Limitation in Visible Light Positioning Systems for Unmanned Aerial Vehicles. , 2019, , .		5
30	A Comparison of APD- and SPAD-Based Receivers for Visible Light Communications. Journal of Lightwave Technology, 2018, 36, 2435-2442.	2.7	68
31	Flexible Glass Hybridized Colloidal Quantum Dots for Gb/s Visible Light Communications. IEEE Photonics Journal, 2018, 10, 1-11.	1.0	12
32	Performance Comparison of Equalization Techniques for SI-POF Multi-Gigabit Communication With PAM- M and Device Non-Linearities. Journal of Lightwave Technology, 2018, 36, 2301-2308.	2.7	17
33	Reducing Noise Pollution of Emergency Vehicle Sirens with an Early Warning System. , 2018, , .		Ο
34	Application of Visible Light Communication in an Industrial Environment. , 2018, , .		6
35	MIMO Visible Light Communications Using a Wide Field-of-View Fluorescent Concentrator. IEEE Photonics Technology Letters, 2017, 29, 306-309.	1.3	21
36	A comparative study of optical concentrators for visible light communications. Proceedings of SPIE, 2017, , .	0.8	5

#	Article	IF	CITATIONS
37	A Multigigabit per Second Integrated Multiple-Input Multiple-Output VLC Demonstrator. Journal of Lightwave Technology, 2017, 35, 4358-4365.	2.7	40
38	A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications. Semiconductor Science and Technology, 2017, 32, 023001.	1.0	205
39	Demonstration of a multi-hop underwater visible light communication system. , 2017, , .		7
40	OFDM-PWM scheme for visible light communications. Optics Communications, 2017, 385, 213-218.	1.0	21
41	Design, Fabrication, and Application of GaN-Based Micro-LED Arrays With Individual Addressing by N-Electrodes. IEEE Photonics Journal, 2017, 9, 1-11.	1.0	22
42	Hybrid POF/VLC link with M-PAM and MLP equaliser. , 2017, , .		8
43	Development, performance and application of novel GaN-based micro-LED arrays with individually addressable n-electrodes. , 2017, , .		1
44	Analysis of nonline-of-sight visible light communications. Optical Engineering, 2017, 56, 1.	0.5	5
45	High Bandwidth GaN-Based Micro-LEDs for Multi-Gb/s Visible Light Communications. IEEE Photonics Technology Letters, 2016, 28, 2023-2026.	1.3	276
46	Multi-layer perceptron as equalisers for multilevel pulse amplitude modulation scheme in SI-POF. , 2016, , .		1
47	LED Based Wavelength Division Multiplexed 10 Gb/s Visible Light Communications. Journal of Lightwave Technology, 2016, 34, 3047-3052.	2.7	187
48	Single carrier optical FDM in visible light communication. , 2016, , .		4
49	A review on effects of the atmospheric turbulence on laser beam propagation $\hat{a} \in$ " An analytic approach. , 2016, , .		4
50	100 Mb/s wavelength division multiplexing visible light communications link using a triple-junction photo-diode. , 2016, , .		2
51	Spatial and wavelength division multiplexing for high-speed VLC systems: An overview. , 2016, , .		3
52	Design of a visible light communication system for deep sea divers based on analogue frequency modulation. , 2016, , .		3
53	Wide field-of-view fluorescent antenna for visible light communications beyond the étendue limit. Optica, 2016, 3, 702.	4.8	73
54	Demonstration of a MIMO visible light communication system utilizing analog circuits. , 2016, , .		0

#	Article	IF	CITATIONS
55	A high speed generalised space shift keying link with micro-LEDs and CMOS APD receiver. , 2016, , .		3
56	High-Speed Integrated Visible Light Communication System: Device Constraints and Design Considerations. IEEE Journal on Selected Areas in Communications, 2015, 33, 1750-1757.	9.7	106
57	Multi-band carrier-less amplitude and phase modulation with decision feedback equalization for bandlimited VLC systems. , 2015, , .		15
58	A 200 Mb/s VLC demonstration with a SPAD based receiver. , 2015, , .		28
59	Spectral Shape Impact of Nonlinear Compensator Signal in LTE RoF System. IEEE Photonics Technology Letters, 2015, 27, 2481-2484.	1.3	4
60	Novel Fast Color-Converter for Visible Light Communication Using a Blend of Conjugated Polymers. ACS Photonics, 2015, 2, 194-199.	3.2	57
61	Integrated multiple-input multiple-output visible light communications systems: recent progress and results. Proceedings of SPIE, 2015, , .	0.8	4
62	Multi-band carrier-less amplitude and phase modulation for bandlimited visible light communications systems. IEEE Wireless Communications, 2015, 22, 46-53.	6.6	68
63	Visible light communication using laser diode based remote phosphor technique. , 2015, , .		30
64	Multi-Gigabit integrated MIMO visible light communication system: Progress and updates. , 2015, , .		3
65	Demonstration of 2.3 Gb/s RGB white-light VLC using polymer based colour-converters and GaN micro-LEDs. , 2015, , .		17
66	Experimental proof-of-concept of optical spatial modulation OFDM using micro LEDs. , 2015, , .		13
67	Experimental Error Performance of Modulation Schemes Under a Controlled Laboratory Turbulence FSO Channel. Journal of Lightwave Technology, 2015, 33, 244-250.	2.7	36
68	Fluorescent Redâ€Emitting BODIPY Oligofluorene Starâ€Shaped Molecules as a Color Converter Material for Visible Light Communications. Advanced Optical Materials, 2015, 3, 536-540.	3.6	44
69	Management of metabolic resources for a 20-km cycling time-trial using different types of pacing. Journal of Human Sport and Exercise, 2015, 10, .	0.2	1
70	Visible Light Communications: Improving data rate, link margin and field of view. , 2014, , .		3
71	Imaging-MIMO visible light communication system using μLEDs and integrated receiver. , 2014, , .		14
72	Demonstration of a Bi-directional visible light communication with an overall sum-rate of 110 Mb/s using LEDs as emitter and detector. , 2014, , .		12

#	Article	IF	CITATIONS
73	Design and analysis of an angularâ€segmented fullâ€mobility visible light communications receiver. Transactions on Emerging Telecommunications Technologies, 2014, 25, 591-599.	2.6	51
74	Visible Light Communications: 170 Mb/s Using an Artificial Neural Network Equalizer in a Low Bandwidth White Light Configuration. Journal of Lightwave Technology, 2014, 32, 1807-1813.	2.7	109
75	Compensating for Optical Beam Scattering and Wandering in FSO Communications. Journal of Lightwave Technology, 2014, 32, 1323-1328.	2.7	57
76	A 3-Gb/s Single-LED OFDM-Based Wireless VLC Link Using a Gallium Nitride \$mu{m LED}\$. IEEE Photonics Technology Letters, 2014, 26, 637-640.	1.3	722
77	Effectiveness of blue-filtering in WLED based indoor Visible light communication. , 2014, , .		14
78	A 20-Mb/s VLC Link With a Polymer LED and a Multilayer Perceptron Equalizer. IEEE Photonics Technology Letters, 2014, 26, 1975-1978.	1.3	25
79	Visible Light Communication Using a Blue GaN \$mu \$ LED and Fluorescent Polymer Color Converter. IEEE Photonics Technology Letters, 2014, 26, 2035-2038.	1.3	109
80	Online artificial neural network equalization for a visible light communications system with an organic light emitting diode based transmitter. , 2013, , .		2
81	Wavelet-Neural Network VLC Receiver in the Presence of Artificial Light Interference. IEEE Photonics Technology Letters, 2013, 25, 1424-1427.	1.3	14
82	Evaluation of the beam wondering in free space optics by image analysis. , 2013, , .		1
83	Comparative study of classifiers to mitigate intersymbol interference in diffuse indoor optical wireless communication links. Optik, 2013, 124, 4192-4196.	1.4	11
84	Improvement of Transmission Bandwidth for Indoor Optical Wireless Communication Systems Using an Elliptical Lambertian Beam. IEEE Photonics Technology Letters, 2013, 25, 107-110.	1.3	13
85	Modelling of free space optical link for groundâ€toâ€train communications using a Gaussian source. IET Optoelectronics, 2013, 7, 1-8.	1.8	51
86	Route diversity analyses for free-space optical wireless links within turbulent scenarios. Optics Express, 2013, 21, 7641.	1.7	22
87	Experimental wavelet based denoising for indoor infrared wireless communications. Optics Express, 2013, 21, 13779.	1.7	6
88	Visible light communications: 375ÂMbits/s data rate with a 160ÂkHz bandwidth organic photodetector and artificial neural network equalization [Invited]. Photonics Research, 2013, 1, 65.	3.4	22
89	A MIMO-ANN system for increasing data rates in organic visible light communications systems. , 2013, , .		21
90	Hybrid pulse position modulation and binary phase shift keying subcarrier intensity modulation for free space optics in a weak and saturated turbulence channel. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2012, 29, 1680.	0.8	26

#	Article	IF	CITATIONS
91	Performance Analysis of Ethernet/Fast-Ethernet Free Space Optical Communications in a Controlled Weak Turbulence Condition. Journal of Lightwave Technology, 2012, 30, 2188-2194.	2.7	71
92	Coherent Heterodyne Multilevel Polarization Shift Keying With Spatial Diversity in a Free-Space Optical Turbulence Channel. Journal of Lightwave Technology, 2012, 30, 2689-2695.	2.7	64
93	Improvement of the Transmission Bandwidth for Indoor Optical Wireless Communication Systems Using a Diffused Gaussian Beam. IEEE Communications Letters, 2012, 16, 1316-1319.	2.5	19
94	Exploiting Equalization Techniques for Improving Data Rates in Organic Optoelectronic Devices for Visible Light Communications. Journal of Lightwave Technology, 2012, 30, 3081-3088.	2.7	72
95	Adaptive †soft' sliding block decoding of convolutional code using the artificial neural network. Transactions on Emerging Telecommunications Technologies, 2012, 23, 672-677.	2.6	3
96	Ethernet FSO Communications Link Performance Study Under a Controlled Fog Environment. IEEE Communications Letters, 2012, 16, 408-410.	2.5	42
97	Investigation of FSO ground-to-train communications in a laboratory environment. , 2011, , .		7
98	Wavelet—Artificial Neural Network Receiver for Indoor Optical Wireless Communications. Journal of Lightwave Technology, 2011, 29, 2651-2659.	2.7	15
99	A Fast Ethernet FSO Link Performance Under the Fog Controlled Environment. , 2011, , .		2
100	The use of linear projections in the visual analysis of signals in an indoor optical wireless link. , 2010, , .		0
101	Performance of diffused indoor optical wireless links employing neural and adaptive linear equalizers. , 2007, , .		4
102	Experimental evaluation of adaptive maximum power point tracking for a standalone photovoltaic system. Energy Systems, 0, , 1.	1.8	1