Kazuo Eda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1792788/publications.pdf

Version: 2024-02-01

411340 425179 1,445 97 20 34 citations h-index g-index papers 97 97 97 2140 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Stereoisomer-dependent conversion of dinaphthothienothiophene precursor films. Scientific Reports, 2022, 12, 4448.	1.6	1
2	A Theoretical Approach to the Fluorophilicity of Ions via the Gibbs Energy of Ion Transfer at the Fluorous Solvent/Water Interface. Analytical Sciences, 2021, 37, 1783-1787.	0.8	2
3	Photo-on-Demand Synthesis of Vilsmeier Reagents with Chloroform and Their Applications to One-Pot Organic Syntheses. Journal of Organic Chemistry, 2021, 86, 6504-6517.	1.7	18
4	Photo-on-Demand Base-Catalyzed Phosgenation Reactions with Chloroform: Synthesis of Arylcarbonate and Halocarbonate Esters. Journal of Organic Chemistry, 2021, 86, 9811-9819.	1.7	16
5	Spin-Crossover-Triggered Linkage Isomerization by the Pedal-like Motion of the Azobenzene Ligand in a Neutral Heteroleptic Iron(III) Complex. Inorganic Chemistry, 2021, 60, 12735-12739.	1.9	8
6	DFT Study of α-Keggin-type Iso-polyoxotungstate Anions [H _n W ₁₂ O ₄₀] ^{(8–<i>n</i>)–} (<i>n</i> =1–4): Can [H ₄ W ₁₂ O ₄₀] ^{4–} Exist?. Inorganic Chemistry, 2021, 60, 15336-15342.	1.9	1
7	Computational Prediction of Adsorption Equilibrium for Nonionic Surfactants at the Oil/Water Interface. Langmuir, 2019, 35, 11345-11350.	1.6	4
8	Two-Dimensional Film Growth of Zinc Tetraphenylporphyrin with the Aid of Solvent Coordination. Bulletin of the Chemical Society of Japan, 2019, 92, 1335-1340.	2.0	4
9	Alternative Face-on Thin Film Structure of Pentacene. Scientific Reports, 2019, 9, 579.	1.6	40
10	Impact of Kinetically Restricted Structure on Thermal Conversion of Zinc Tetraphenylporphyrin Thin Films to the Triclinic and Monoclinic Phases. Journal of Physical Chemistry C, 2018, 122, 4540-4545.	1.5	6
11	Hydrothermal preparation of blue molybdenum bronze nanoribbons: structural changes in mother crystals, related to solid-state conversion and crystallite splitting to nanomorphology. Journal of Nanoparticle Research, $2018, 20, 1$.	0.8	1
12	Prediction of the Standard Gibbs Energy of Ion Transfer across the 1,2-Dichloroethane/Water Interface. Analytical Sciences, 2018, 34, 919-924.	0.8	9
13	Structure control of a zinc tetraphenylporphyrin thin film by vapor annealing using fluorine containing solvent. Thin Solid Films, 2018, 665, 85-90.	0.8	5
14	Can Electron-Rich Oxygen (O ^{2â€"}) Withdraw Electrons from Metal Centers? A DFT Study on Oxoanion-Caged Polyoxometalates. Journal of Physical Chemistry A, 2017, 121, 7684-7689.	1.1	2
15	An Acidâ€Responsive Single Trichromatic Luminescent Dye That Provides Pure Whiteâ€Light Emission. ChemPhotoChem, 2017, 1, 427-431.	1.5	10
16	Controlling Mechanism of Molecular Orientation of Poly(3-alkylthiophene) in a Thin Film Revealed by Using pMAIRS. Macromolecules, 2017, 50, 5090-5097.	2.2	22
17	Synthesis of Furoxans (1,2,5â€oxadiazole 2â€oxides) from Styrenes and Nitrosonium Tetrafluoroborate in Nonâ€Acidic Media and Mechanistic Study. Journal of Heterocyclic Chemistry, 2016, 53, 1094-1105.	1.4	6
18	Comprehensive Understanding of Structureâ€Controlling Factors of a Zinc Tetraphenylporphyrin Thin Film Using pMAIRS and GIXD Techniques. Chemistry - A European Journal, 2016, 22, 16539-16546.	1.7	22

#	Article	IF	CITATIONS
19	Facilitated Transfer of Alkali and Alkaline Earth-metal Ions to the Oil Water Interface Where the Fluorescent Dye diOC ₂ (3) is Adsorbed. Bunseki Kagaku, 2016, 65, 71-77.	0.1	1
20	Mechanism of Multi-Electron Transfer Reactions for Heteropolyanions. Review of Polarography, 2015, 61, 77-86.	0.0	0
21	Chiroptical sensing of oligonucleotides with a cyclic octapyrrole. Organic Chemistry Frontiers, 2015, 2, 29-33.	2.3	14
22	Coextraction of Water into Nitrobenzene with Organic Ions. Journal of Physical Chemistry B, 2015, 119, 6010-6017.	1.2	9
23	How Can Multielectron Transfer Be Realized? A Case Study with Keggin-Type Polyoxometalates in Acetonitrile. Inorganic Chemistry, 2015, 54, 2793-2801.	1.9	30
24	Prediction of the Standard Gibbs Energy of Transfer of Organic Ions Across the Interface between Two Immiscible Liquids. Journal of Physical Chemistry B, 2015, 119, 13167-13176.	1.2	16
25	A non-Bornian analysis of the Gibbs energy of hydration for organic ions. RSC Advances, 2014, 4, 27634-27641.	1.7	8
26	A Non-Bornian Analysis of the Gibbs Energy of Ion Hydration. Bulletin of the Chemical Society of Japan, 2014, 87, 403-411.	2.0	8
27	A revisit to the non-Bornian theory of the Gibbs energy of ion transfer between two immiscible liquids. Journal of Electroanalytical Chemistry, 2013, 704, 38-43.	1.9	15
28	Formation processes of high-dimensional MoO frameworks in tetrakis(2-hydroxypropane-1,3-diaminium) hexatriacontamolybdate hydrate (C3H12N2O)4[Mo36O112(H2O)16-m]·nH2O crystals: Solid-phase structural conversions under restricted dehydration conditions. Journal of Solid State Chemistry, 2013, 199, 134-140.	1.4	O
29	Synthesis of Furoxans from Styrenes under Basic or Neutral Conditions. Synthesis, 2013, 45, 1524-1528.	1.2	10
30	Preparation of Nanoribbons of Blue Potassium Molybdenum Bronze. Chemistry Letters, 2013, 42, 1514-1516.	0.7	1
31	A new class of 30-tungsto polyoxometalates: Preparation, structure, and electrochemical properties of bispyrophosphatotriacontatungstate [(P2O7)2W30O90]8â°'. Inorganica Chimica Acta, 2012, 382, 182-185.	1.2	2
32	81Br NQR and crystal structure of 4-bromopyridinium pentabromoantimonate(III); 3c–4e bonding and NQR trans influence. Journal of Molecular Structure, 2010, 965, 68-73.	1.8	6
33	Synthesis, crystal structure, and structural conversion of Ni molybdate hydrate NiMoO4·nH2O. Journal of Solid State Chemistry, 2010, 183, 1334-1339.	1.4	62
34	Facile preparation of an \hat{l} ±-Keggin-type [H3W12O40]5 \hat{a} ° complex: Does it exist in aqueous solution?. Polyhedron, 2010, 29, 2595-2599.	1.0	12
35	Effect of ortho-substituents on the stereochemistry of 2-(o-substituted) Tj ETQq1 1 0.784314 rgBT /Overlock 10 2022-2029.	0.8 Tf 50 107	7 Td (phenyl)- 11
36	Oxidative transformation of thiols to disulfides promoted by activated carbon–air system. Tetrahedron Letters, 2010, 51, 6734-6736.	0.7	39

#	Article	IF	CITATIONS
37	Effect of the Central Oxoanion Size on the Voltammetric Properties of Keggin-Type [XW ₁₂ O ₄₀] ^{<i>n</i>ê^'} (<i>n</i> = 2â^6) Complexes. Inorganic Chemistry, 2010, 49, 5212-5215.	1.9	48
38	Transition metal tetramolybdate dihydrates MMo4O13·2H2O (M=Co,Ni) having a novel pillared layer structure. Journal of Solid State Chemistry, 2009, 182, 55-59.	1.4	6
39	A new class of 30-molybdo complexes: Formation, structure and electrochemical properties of bisselenitopyrophosphatotriacontamolybdate, [(SeO3)2(P2O7)Mo30O90]8â°', and bispyrophosphatotriacontamolybdate, [(P2O7)2Mo30O90]8â°'. Polyhedron, 2009, 28, 4032-4038.	1.0	9
40	A route to a Keggin-Type \hat{l} ±-[(XIIIO4)Mo12O35(OH)]4 \hat{a} ° anion through an Anderson-type [XIII(OH)6Mo6O18]3 \hat{a} ° anion: X = Ga. Dalton Transactions, 2009, , 6114.	1.6	21
41	2-Phenylimidazoleâ^'PdCl2 and 2-Phenylimidazolineâ^'PdCl2 Complexes: Single-Crystal and Powder X-ray Diffractometry, 1H NMR Spectra, and Comparison of Catalytic Activities in Coupling Reactions. Organometallics, 2008, 27, 3748-3752.	1.1	36
42	Photoinduced Dynamics of TiO ₂ Doped with Cr and Sb. Journal of Physical Chemistry C, 2008, 112, 1167-1173.	1.5	109
43	An Approach to the Synthesis of Polyoxometalate Encapsulating Different Kinds of Oxoanions as Heteroions: Bisphosphitopyrophosphatotriacontamolybdate [(HPO3)2(P2O7)Mo30O90]8â°'. Inorganic Chemistry, 2008, 47, 11197-11201.	1.9	13
44	Ligand Effects of 2-(2-Pyridyl)benzazoleâ^'Pd Complexes on the X-ray Crystallographic Structures, ¹ H NMR Spectra, and Catalytic Activities in Mizorokiâ^'Heck Reactions. Organometallics, 2007, 26, 6551-6555.	1.1	67
45	Imidazole and Imidazoline Derivatives asN-Donor Ligands for Palladium-Catalyzed Mizoroki–Heck Reaction. Advanced Synthesis and Catalysis, 2007, 349, 833-835.	2.1	56
46	Phase transition of pyridinium tetrachloroiodate(III), PyHICl4, studied by a single crystal X-ray analysis and dielectric and heat capacity measurements. Journal of Molecular Structure, 2007, 826, 24-28.	1.8	18
47	Fabrications of some kinds of 2-D frameworks consisting of nanosized polyoxomolybdate anion [Mo36O112(H2O)16]8â^' via condensation processes. Journal of Solid State Chemistry, 2007, 180, 3588-3593.	1.4	8
48	Crystal Structure of Bis(2-diethoxycarbonylethanyl-8-hydroxyquinolinato-N,O)Cu(II). Analytical Sciences: X-ray Structure Analysis Online, 2006, 22, X59-X60.	0.1	1
49	Crystal Structure of Sodium Guaiazulene Sulfonate Hemihydrate. Analytical Sciences: X-ray Structure Analysis Online, 2006, 22, X61-X62.	0.1	0
50	Structure-inheriting solid-state reactions under hydrothermal conditions. Journal of Solid State Chemistry, 2006, 179, 1453-1458.	1.4	29
51	Selective C-3 lithiation of 2,3-dibromo- and 2,3-diiodo-1-methylindoles. Tetrahedron Letters, 2006, 47, 8535-8537.	0.7	4
52	Hydrothermal synthesis of potassium molybdenum oxide bronzes: structure-inheriting solid-state route to blue bronze and dissolution/deposition route to red bronze. Journal of Solid State Chemistry, 2005, 178, 158-165.	1.4	13
53	Three-dimensional supramolecular assembly having infinite two-dimensional interlocking networks built up only from simple and non-rigid organic molecules via hydrogen bonds. Crystal structures of α,ï‰-diureidoalkanes H2N(CO)NH–(CH2)n–NH(CO)NH2 with n=4 and 5. Journal of Molecular Structure, 2005. 752. 93-97.	1.8	3
54	Low-temperature synthetic route based on the amorphous nature of giant species for preparation of lower valence oxides. Journal of Solid State Chemistry, 2005, 178, 1471-1477.	1.4	5

#	Article	IF	CITATIONS
55	Salts of tetrachloroauric acid with pyridine N-oxide having various base/acid ratios of 1/1, 4/3, 3/2 and 2/1: crystal structures, 35Cl NQR and phase transitions. Polyhedron, 2004, 23, 1605-1611.	1.0	9
56	K2Mo4O13 phases prepared by hydrothermal synthesis. Journal of Solid State Chemistry, 2004, 177, 916-921.	1.4	24
57	Calorimetric study of hydrated sodium molybdenum bronze. Thermochimica Acta, 2003, 406, 171-176.	1.2	0
58	Hydrothermal Synthesis and Calorimetric Study of Blue Molybdenum Bronze, K0.28MoO3. Bulletin of the Chemical Society of Japan, 2003, 76, 557-560.	2.0	1
59	lon-exchange Behavior between Sodium Ion and Other Metal Cations in Hydrated Molybdenum Bronzes. Journal of Ion Exchange, 2003, 14, 105-108.	0.1	0
60	NMR Study on Proton Behavior of Hexagonal Hydrogen Molybdenum Bronze obtained by Ion Exchange. Journal of Ion Exchange, 2003, 14, 109-112.	0.1	0
61	New Synthetic Pathway to Novel Molybdenum Giant Cluster Compounds. Chemistry Letters, 2002, 31, 952-953.	0.7	3
62	Hydrothermal Synthesis of the Blue Potassium Molybdenum Bronze, KO.28MoO3. Journal of Solid State Chemistry, 2002, 164, 81-87.	1.4	12
63	Room Temperature Solid State Reaction Involving Structural Transformation of Covalent Oxide Network. Journal of Solid State Chemistry, 2002, 164, 157-162.	1.4	2
64	New Low-Temperature Synthetic Method of Complex Inorganic Solids: Amorphous Route Based on Amorphous Nature of Soluble Giant Clusters. Chemistry Letters, 2001, 30, 74-75.	0.7	2
65	A New Synthetic Route for Mixed-Valence Compounds: Leaching Treatments of Hydrogen Molybdenum Bronze. Journal of Solid State Chemistry, 2001, 159, 51-58.	1.4	4
66	Direct Synthesis of Hydrogen Coinserted Hydrated Sodium and Potassium Molybdenum Bronzes: Their Characterization and Selective Preparation of Purple, Blue, and Red Molybdenum Bronzes. Journal of Solid State Chemistry, 2001, 159, 87-93.	1.4	6
67	Title is missing!. Journal of Materials Science, 2001, 36, 703-713.	1.7	15
68	Proton NMR study of the lowest-hydrogen-content molybdenum bronzeH0.26MoO3. Physical Review B, 2001, 63, .	1.1	4
69	Calorimetric Study of Hydrated Potassium Molybdenum Bronze. Bulletin of the Chemical Society of Japan, 2000, 73, 2305-2308.	2.0	2
70	Reactivity for isomerization of 1-butene on the mixed MoO3–ZnO oxide catalyst. Applied Catalysis A: General, 1999, 178, 167-176.	2.2	17
71	Calorimetric study of alkali-metal decamolybdates. Journal of Materials Chemistry, 1999, 9, 529-531.	6.7	5
72	Hydrogen Insertion on Alkali Metal Decamolybdates by Spillover. Bulletin of the Chemical Society of Japan, 1999, 72, 2451-2457.	2.0	3

#	Article	IF	Citations
73	Spin-Glass Behavior of Hydrogen Molybdenum Bronze, HxMoO3. Chemistry Letters, 1999, 28, 593-594.	0.7	2
74	Low-temperature Synthesis Routes of Alkali-metal Molybdenum Bronzes. Chemistry Letters, 1999, 28, 811-812.	0.7	6
75	Cesium–Sodium Ion Exchange on Hydrated Molybdenum Bronze and Formation of New Cesium Molybdenum Bronze by a Low-Temperature Synthesis Route. Journal of Solid State Chemistry, 1998, 137, 12-18.	1.4	16
76	Reexamination of Protonic Locations in Hydrogen Molybdenum Bronze, HxMoO3. Journal of Solid State Chemistry, 1998, 141, 255-261.	1.4	11
77	New Family Member of Hydrogen Molybdenum Bronze, HxMoO3. Chemistry Letters, 1998, 27, 819-820.	0.7	7
78	Heat Treatment of Hydrogen Molybdenum Bronze in an Oxygen-Free Atmosphere. Formation of a Defect Structure and Attempt to Carry Out a Catalytic Reaction. Bulletin of the Chemical Society of Japan, 1998, 71, 2063-2070.	2.0	8
79	Structural Reconstruction by Selective Extraction of Specific Species: Non-reductive Change from H0.3MoO3to H1.5MoO3. Chemistry Letters, 1997, 26, 1047-1048.	0.7	1
80	Potassium–sodium ion exchange on hydrated molybdenum bronze. Journal of Materials Chemistry, 1997, 7, 821-826.	6.7	5
81	Preparation of Hydrated Potassium Molybdenum Bronzes and Their Thermal Decomposition. Journal of Solid State Chemistry, 1997, 132, 330-336.	1.4	14
82	Study of the Local Structure of Molybdenumâ^'Magnesium Binary Oxides by Means of Mo L3-Edge XANES and UVâ^'Vis Spectroscopy. The Journal of Physical Chemistry, 1996, 100, 19495-19501.	2.9	77
83	Preparation and characterization of a sodium insertion compound of hydrogen molybdenum bronze, NaO.25(H2O) y [H0.21MoO3]. Journal of Materials Chemistry, 1994, 4, 205.	6.7	7
84	Low temperature preparation of the blue potassium bronze from a hydrated potassium molybdenum bronze by heat treatment in a nitrogen atmosphere. Materials Research Bulletin, 1993, 28, 363-368.	2.7	7
85	Thermal decomposition of hydrogen molybdenum bronze, H0.25MoO3, in a nitrogen atmosphere: defects and phase transformations. Journal of Materials Chemistry, 1992, 2, 533.	6.7	11
86	Raman spectra of hydrogen molybdenum bronze, H0.30MoO3. Journal of Solid State Chemistry, 1992, 98, 350-357.	1.4	50
87	Structural and Compositional Changes of Hydrated Sodium Molybdenum Bronze by Heat Treatments in Air. Bulletin of the Chemical Society of Japan, 1991, 64, 1698-1700.	2.0	1
88	Formation of Na0.9Mo6O17in a Solid-Phase Process. Transformations of a Hydrated Sodium Molybdenum Bronze, Na0.23(H2O)0.78MoO3, with Heat Treatments in a Nitrogen Atmosphere. Bulletin of the Chemical Society of Japan, 1991, 64, 161-164.	2.0	20
89	A Hydrogen Insertion Compound of Molybdenum Oxide Hydrate, H0.12–0.22MoO3·H2O, and Its Formation Process from Hydrogen Molybdenum Bronze, HxMoO3. Bulletin of the Chemical Society of Japan, 1991, 64, 2926-2930.	2.0	4
90	Longitudinal-transverse splitting effects in IR absorption spectra of MoO3. Journal of Solid State Chemistry, 1991, 95, 64-73.	1.4	71

Kazuo Eda

#	Article	IF	CITATION
91	Characterization of hydrated sodium molybdenum bronzes. Journal of Solid State Chemistry, 1990, 89, 123-129.	1.4	24
92	Nuclear magnetic resonance and differential thermal analysis studies of hydrogen molybdenum bronzes, H x MoO3. Journal of the Chemical Society, Faraday Transactions, 1990, 86, 1583.	1.7	24
93	Infrared spectra of hydrogen molybdenum bronze, H0.34MoO3. Journal of Solid State Chemistry, 1989, 83, 292-303.	1.4	27
94	Formation of a Hydrogen Insertion Compound of Hydrated Molybdenum Oxide from Hydrogen Molybdenum Bronze. Bulletin of the Chemical Society of Japan, 1989, 62, 4039-4040.	2.0	8
95	Preparation and Characterization of Hydrogen Molybdenum Bronzes, HxMoO3. Bulletin of the Chemical Society of Japan, 1989, 62, 903-907.	2.0	68
96	Computational Prediction of the Adsorption Equilibrium for Ionic Surfactants at the Electrified Oil/Water Interface. ChemElectroChem, 0, , .	1.7	0
97	Computational Prediction of the Adsorption Equilibrium for Ionic Surfactants at the Electrified Oil/Water Interface. ChemElectroChem, 0, , .	1.7	0