Peter Ã-sterholm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1792780/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparison of the Metal Content in Acid Sulfate Soil Runoff and Industrial Effluents in Finland. Environmental Science & Technology, 2002, 36, 4269-4272.	10.0	80
2	Spatial trends and losses of major and trace elements in agricultural acid sulphate soils distributed in the artificially drained Rintala area, W. Finland. Applied Geochemistry, 2002, 17, 1209-1218.	3.0	59
3	Estuarine behaviour of metal loads leached from coastal lowland acid sulphate soils. Marine Environmental Research, 2008, 66, 378-393.	2.5	54
4	Quantification of current and future leaching of sulfur and metals from Boreal acid sulfate soils, western Finland. Soil Research, 2004, 42, 547.	1.1	48
5	Metal speciation in rivers affected by enhanced soil erosion and acidity. Applied Geochemistry, 2012, 27, 906-916.	3.0	48
6	Metal species in a Boreal river system affected by acid sulfate soils. Applied Geochemistry, 2013, 31, 133-141.	3.0	43
7	Hydrochemical Effects of Surface Liming, Controlled Drainage and Lime-Filter Drainage on Boreal Acid Sulfate Soils. Water, Air, and Soil Pollution, 2007, 179, 107-116.	2.4	36
8	Attenuation of rare earth elements in a boreal estuary. Geochimica Et Cosmochimica Acta, 2012, 96, 105-119.	3.9	35
9	Lanthanoid behaviour in an acidic landscape. Geochimica Et Cosmochimica Acta, 2010, 74, 829-845.	3.9	33
10	Artificial neural network for acid sulfate soil mapping: Application to the Sirppujoki River catchment area, south-western Finland. Journal of Geochemical Exploration, 2013, 125, 46-55.	3.2	33
11	Microbial community potentially responsible for acid and metal release from an Ostrobothnian acid sulfate soil. FEMS Microbiology Ecology, 2013, 84, 555-563.	2.7	32
12	Meteorological impacts on the water quality in the Pajuluoma acid sulphate area, W. Finland. Applied Geochemistry, 2008, 23, 1594-1606.	3.0	31
13	Characterization of acid sulfate soils and assessing their impact on a humic boreal lake. Journal of Geochemical Exploration, 2011, 110, 107-117.	3.2	31
14	Distribution and speciation of metals, phosphorus, sulfate and organic material in brackish estuary water affected by acid sulfate soils. Applied Geochemistry, 2016, 66, 264-274.	3.0	31
15	Fuzzy logic for acid sulfate soil mapping: Application to the southern part of the Finnish coastal areas. Geoderma, 2014, 226-227, 21-30.	5.1	26
16	Iron behavior in a northern estuary: Large pools of non-sulfidized Fe(II) associated with organic matter. Chemical Geology, 2015, 413, 73-85.	3.3	26
17	Sources, transport and sinks of beryllium in a coastal landscape affected by acidic soils. Geochimica Et Cosmochimica Acta, 2018, 232, 288-302.	3.9	26
18	Machine learning techniques for acid sulfate soil mapping in southeastern Finland. Geoderma, 2022, 406, 115446.	5.1	20

Peter Ã-sterholm

#	Article	IF	CITATIONS
19	Chemical and microbiological evaluation of novel chemical treatment methods for acid sulfate soils. Science of the Total Environment, 2018, 625, 39-49.	8.0	18
20	Impact of acid sulfate soils on the geochemistry of rivers in south-western Finland. Environmental Earth Sciences, 2012, 66, 157-168.	2.7	17
21	Hydrological processes behind annual and decadal-scale variations in the water quality of runoff in Finnish catchments with acid sulfate soils. Journal of Hydrology, 2013, 487, 60-69.	5.4	13
22	Impact of mitigation strategies on acid sulfate soil chemistry and microbial community. Science of the Total Environment, 2015, 526, 215-221.	8.0	13
23	Arsenic removal from contaminated brackish sea water by sorption onto Al hydroxides and Fe phases mobilized by land-use. Science of the Total Environment, 2016, 542, 923-934.	8.0	13
24	Manganese accumulation and solid-phase speciation in a 3.5 m thick mud sequence from the estuary of an acidic and Mn-rich creek, northern Baltic Sea. Chemical Geology, 2016, 437, 56-66.	3.3	12
25	Hydrogeochemical impact of coarse-grained post-glacial acid sulfate soil materials. Geoderma, 2017, 308, 291-301.	5.1	11
26	Nitrogen stocks and flows in an acid sulfate soil. Environmental Monitoring and Assessment, 2020, 192, 751.	2.7	10
27	Subsurface hydrochemical precision treatment of a coastal acid sulfate soil. Applied Geochemistry, 2019, 100, 352-362.	3.0	8
28	Enrichment of trace metals from acid sulfate soils in sediments of the Kvarken Archipelago, eastern Gulf of Bothnia, Baltic Sea. Biogeosciences, 2020, 17, 6097-6113.	3.3	8
29	Biodegraded peat and ultrafine calcium carbonate result in retained metals and higher microbial diversities in boreal acid sulfate soil. Soil Ecology Letters, 2020, 2, 120-130.	4.5	7
30	Dredging and deposition of metal sulfide rich river sediments results in rapid conversion to acid sulfate soil materials. Science of the Total Environment, 2022, 813, 151864.	8.0	7
31	Climatic effects on water quality in areas with acid sulfate soils with commensurable consequences on the reproduction of burbot (Lota lota L.). Environmental Geochemistry and Health, 2020, 42, 3141-3156.	3.4	5
32	Characteristics of sulfide bearing soil materials in peat extraction areas in N-Finland. Journal of Geochemical Exploration, 2021, 220, 106640.	3.2	5
33	Leaching of acid generating materials and elements from coarse- and fine-grained acid sulfate soil materials. Journal of Geochemical Exploration, 2022, 232, 106880.	3.2	5
34	A simplified distillation-based sulfur speciation method for sulfidic soil materials. Bulletin of the Geological Society of Finland, 2021, 93, 19-30.	0.8	3
35	Chemical composition of cabbage (<i>Brassica oleracea</i> L. var. <i>capitata</i>) grown on acid sulfate soils. Journal of Plant Nutrition and Soil Science, 2010, 173, 423-433.	1.9	1