
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1792150/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Green Routes for Synthesis of Zeolites. Chemical Reviews, 2014, 114, 1521-1543.	23.0	511
2	Porous polymer catalysts with hierarchical structures. Chemical Society Reviews, 2015, 44, 6018-6034.	18.7	476
3	Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol. Science, 2020, 367, 193-197.	6.0	470
4	Transesterification Catalyzed by Ionic Liquids on Superhydrophobic Mesoporous Polymers: Heterogeneous Catalysts That Are Faster than Homogeneous Catalysts. Journal of the American Chemical Society, 2012, 134, 16948-16950.	6.6	400
5	Solvent-Free Synthesis of Zeolites from Solid Raw Materials. Journal of the American Chemical Society, 2012, 134, 15173-15176.	6.6	370
6	Highly Efficient Heterogeneous Hydroformylation over Rh-Metalated Porous Organic Polymers: Synergistic Effect of High Ligand Concentration and Flexible Framework. Journal of the American Chemical Society, 2015, 137, 5204-5209.	6.6	292
7	Wet-Chemistry Strong Metal–Support Interactions in Titania-Supported Au Catalysts. Journal of the American Chemical Society, 2019, 141, 2975-2983.	6.6	280
8	Designed copper–amine complex as an efficient template for one-pot synthesis of Cu-SSZ-13 zeolite with excellent activity for selective catalytic reduction of NOx by NH3. Chemical Communications, 2011, 47, 9789.	2.2	269
9	Highly Mesoporous Single-Crystalline Zeolite Beta Synthesized Using a Nonsurfactant Cationic Polymer as a Dual-Function Template. Journal of the American Chemical Society, 2014, 136, 2503-2510.	6.6	266
10	ZSM-5 Zeolite Single Crystals with <i>b</i> -Axis-Aligned Mesoporous Channels as an Efficient Catalyst for Conversion of Bulky Organic Molecules. Journal of the American Chemical Society, 2012, 134, 4557-4560.	6.6	264
11	Sulfated graphene as an efficient solid catalyst for acid-catalyzed liquid reactions. Journal of Materials Chemistry, 2012, 22, 5495.	6.7	245
12	Product Selectivity Controlled by Nanoporous Environments in Zeolite Crystals Enveloping Rhodium Nanoparticle Catalysts for CO ₂ Hydrogenation. Journal of the American Chemical Society, 2019, 141, 8482-8488.	6.6	242
13	Selective Hydrogenation of CO ₂ to Ethanol over Cobalt Catalysts. Angewandte Chemie - International Edition, 2018, 57, 6104-6108.	7.2	241
14	Sustainable Synthesis of Zeolites without Addition of Both Organotemplates and Solvents. Journal of the American Chemical Society, 2014, 136, 4019-4025.	6.6	233
15	Templating route for synthesizing mesoporous zeolites with improved catalytic properties. Nano Today, 2009, 4, 292-301.	6.2	227
16	Solventâ€Free Synthesis of Silicoaluminophosphate Zeolites. Angewandte Chemie - International Edition, 2013, 52, 9172-9175.	7.2	212
17	Hydrothermally Stable Ordered Mesoporous Titanosilicates with Highly Active Catalytic Sites. Journal of the American Chemical Society, 2002, 124, 888-889.	6.6	210
18	Metalated porous porphyrin polymers as efficient heterogeneous catalysts for cycloaddition of epoxides with CO2 under ambient conditions. Journal of Catalysis, 2016, 338, 202-209.	3.1	210

#	Article	IF	CITATIONS
19	New Strategies for the Preparation of Sinterâ€Resistant Metalâ€Nanoparticleâ€Based Catalysts. Advanced Materials, 2019, 31, e1901905.	11.1	203
20	Seed-directed synthesis of zeolites with enhanced performance in the absence of organic templates. Chemical Communications, 2011, 47, 3945.	2.2	178
21	Solvent-Free Synthesis of Zeolites from Anhydrous Starting Raw Solids. Journal of the American Chemical Society, 2015, 137, 1052-1055.	6.6	178
22	Importance of platinum particle size for complete oxidation of toluene over Pt/ZSM-5 catalysts. Chemical Communications, 2015, 51, 5936-5938.	2.2	164
23	Strong Metal–Support Interactions Achieved by Hydroxide-to-Oxide Support Transformation for Preparation of Sinter-Resistant Gold Nanoparticle Catalysts. ACS Catalysis, 2017, 7, 7461-7465.	5.5	158
24	Solvent-Free Synthesis of Zeolites: Mechanism and Utility. Accounts of Chemical Research, 2018, 51, 1396-1403.	7.6	156
25	Isolated boron in zeolite for oxidative dehydrogenation of propane. Science, 2021, 372, 76-80.	6.0	155
26	Task-Specific Design of Porous Polymer Heterogeneous Catalysts beyond Homogeneous Counterparts. ACS Catalysis, 2015, 5, 4556-4567.	5.5	152
27	Porous organic ligands (POLs) for synthesizing highly efficient heterogeneous catalysts. Chemical Communications, 2014, 50, 11844-11847.	2.2	148
28	Mesoporous ZSM-5 Zeolite-Supported Ru Nanoparticles as Highly Efficient Catalysts for Upgrading Phenolic Biomolecules. ACS Catalysis, 2015, 5, 2727-2734.	5.5	147
29	Importance of Zeolite Wettability for Selective Hydrogenation of Furfural over Pd@Zeolite Catalysts. ACS Catalysis, 2018, 8, 474-481.	5.5	146
30	High-Temperature Generalized Synthesis of Stable Ordered Mesoporous Silica-Based Materials by Using Fluorocarbon–Hydrocarbon Surfactant Mixtures. Angewandte Chemie - International Edition, 2003, 42, 3633-3637.	7.2	143
31	Selective catalytic reduction of NO <i>x</i> with NH3: opportunities and challenges of Cu-based small-pore zeolites. National Science Review, 2021, 8, nwab010.	4.6	137
32	Two-dimensional gold nanostructures with high activity for selective oxidation of carbon–hydrogen bonds. Nature Communications, 2015, 6, 6957.	5.8	133
33	Porous Ionic Polymers as a Robust and Efficient Platform for Capture and Chemical Fixation of Atmospheric CO ₂ . ChemSusChem, 2017, 10, 1160-1165.	3.6	127
34	Silica accelerates the selective hydrogenation of CO2 to methanol on cobalt catalysts. Nature Communications, 2020, 11, 1033.	5.8	124
35	Coking-Resistant Iron Catalyst in Ethane Dehydrogenation Achieved through Siliceous Zeolite Modulation. Journal of the American Chemical Society, 2020, 142, 16429-16436.	6.6	120
36	Selective Catalytic Production of 5â€Hydroxymethylfurfural from Glucose by Adjusting Catalyst Wettability. ChemSusChem, 2014, 7, 402-406.	3.6	119

#	Article	IF	CITATIONS
37	Enhanced performance in catalytic combustion of toluene over mesoporous Beta zeolite-supported platinum catalyst. Applied Catalysis B: Environmental, 2013, 140-141, 199-205.	10.8	111
38	Adsorptive and catalytic properties in the removal of volatile organic compounds over zeolite-based materials. Chinese Journal of Catalysis, 2016, 37, 800-809.	6.9	101
39	Designed synthesis of TS-1 crystals with controllable b-oriented length. Chemical Communications, 2011, 47, 1048-1050.	2.2	96
40	Transesterification to Biodiesel with Superhydrophobic Porous Solid Base Catalysts. ChemSusChem, 2011, 4, 1059-1062.	3.6	95
41	A Hierarchical Bipyridineâ€Constructed Framework for Highly Efficient Carbon Dioxide Capture and Catalytic Conversion. ChemSusChem, 2017, 10, 1186-1192.	3.6	94
42	Superhydrophobicity: Constructing Homogeneous Catalysts into Superhydrophobic Porous Frameworks to Protect Them from Hydrolytic Degradation. CheM, 2016, 1, 628-639.	5.8	93
43	Improved <i>para</i> â€Xylene Selectivity in <i>metaâ€</i> Xylene Isomerization Over ZSMâ€5 Crystals with Relatively Long <i>b</i> â€Axis Length. ChemCatChem, 2013, 5, 1517-1523.	1.8	92
44	Design and synthesis of an efficient nanoporous adsorbent for Hg ²⁺ and Pb ²⁺ ions in water. Journal of Materials Chemistry A, 2016, 4, 5999-6005.	5.2	86
45	Cobalt–Nickel Catalysts for Selective Hydrogenation of Carbon Dioxide into Ethanol. ACS Catalysis, 2019, 9, 11335-11340.	5.5	85
46	Aluminium-rich Beta zeolite-supported platinum nanoparticles for the low-temperature catalytic removal of toluene. Journal of Materials Chemistry A, 2015, 3, 5556-5562.	5.2	83
47	Insights of the Crystallization Process of Molecular Sieve AlPO ₄ -5 Prepared by Solvent-Free Synthesis. Journal of the American Chemical Society, 2016, 138, 6171-6176.	6.6	77
48	Organotemplate-free synthesis of high-silica ferrierite zeolite induced by CDO-structure zeolite building units. Journal of Materials Chemistry, 2011, 21, 9494.	6.7	76
49	Rational synthesis of Beta zeolite with improved quality by decreasing crystallization temperature in organotemplate-free route. Microporous and Mesoporous Materials, 2013, 180, 123-129.	2.2	74
50	A hierarchical porous ionic organic polymer as a new platform for heterogeneous phase transfer catalysis. Journal of Materials Chemistry A, 2015, 3, 23871-23875.	5.2	73
51	Efficient and rapid transformation of high silica CHA zeolite from FAU zeolite in the absence of water. Journal of Materials Chemistry A, 2017, 5, 9076-9080.	5.2	71
52	Creating solvation environments in heterogeneous catalysts for efficient biomass conversion. Nature Communications, 2018, 9, 3236.	5.8	70
53	Design and preparation of efficient hydroisomerization catalysts by the formation of stable SAPO-11 molecular sieve nanosheets with 10–20 nm thickness and partially blocked acidic sites. Chemical Communications, 2017, 53, 4942-4945.	2.2	69
54	Atom-economical synthesis of a high silica CHA zeolite using a solvent-free route. Chemical Communications, 2015, 51, 16920-16923.	2.2	68

#	Article	IF	CITATIONS
55	Mesoporous zeolites as efficient catalysts for oil refining and natural gas conversion. Frontiers of Chemical Science and Engineering, 2013, 7, 233-248.	2.3	67
56	A significant enhancement of catalytic activities in oxidation with H2O2 over the TS-1 zeolite by adjusting the catalyst wettability. Chemical Communications, 2014, 50, 2012.	2.2	66
57	Enhanced catalytic performance in dehydration of sorbitol to isosorbide over a superhydrophobic mesoporous acid catalyst. Catalysis Today, 2015, 242, 249-254.	2.2	66
58	Beyond Creation of Mesoporosity: The Advantages of Polymerâ€Based Dualâ€Function Templates for Fabricating Hierarchical Zeolites. Advanced Functional Materials, 2016, 26, 1881-1891.	7.8	66
59	Complete oxidation of formaldehyde at room temperature over an Al-rich Beta zeolite supported platinum catalyst. Applied Catalysis B: Environmental, 2017, 219, 200-208.	10.8	65
60	Synthesis, Characterization, and Catalytic Activity of Mesostructured Titanosilicates Assembled from Polymer Surfactants with Preformed Titanosilicate Precursors in Strongly Acidic Media. Journal of Physical Chemistry B, 2003, 107, 8972-8980.	1.2	63
61	Superhydrophilic mesoporous sulfonated melamine–formaldehyde resin supported palladium nanoparticles as an efficient catalyst for biofuel upgrade. Journal of Materials Chemistry A, 2013, 1, 8630.	5.2	63
62	Mesoporous cross-linked polymer copolymerized with chiral BINAP ligand coordinated to a ruthenium species as an efficient heterogeneous catalyst for asymmetric hydrogenation. Chemical Communications, 2012, 48, 10505.	2.2	60
63	Solventâ€Free Syntheses of Hierarchically Porous Aluminophosphateâ€Based Zeolites with AEL and AFI Structures. Chemistry - A European Journal, 2014, 20, 17616-17623.	1.7	59
64	Methanol to Olefins Reaction over Cavity-type Zeolite: Cavity Controls the Critical Intermediates and Product Selectivity. ACS Catalysis, 2018, 8, 10950-10963.	5.5	59
65	Sulfonated hollow sphere carbon as an efficient catalyst for acetalisation of glycerol. Journal of Materials Chemistry A, 2013, 1, 9422.	5.2	58
66	A new catalyst platform: zeolite Beta from template-free synthesis. Catalysis Science and Technology, 2013, 3, 2580.	2.1	58
67	Solvent-free synthesis of titanosilicate zeolites. Journal of Materials Chemistry A, 2015, 3, 14093-14095.	5.2	58
68	Enhanced aromatic selectivity by the sheet-like ZSM-5 in syngas conversion. Journal of Energy Chemistry, 2019, 35, 44-48.	7.1	58
69	Pyrrolidone-modified SBA-15 supported Au nanoparticles with superior catalytic properties in aerobic oxidation of alcohols. Chemical Communications, 2010, 46, 5003.	2.2	57
70	Controllable cyanation of carbon-hydrogen bonds by zeolite crystals over manganese oxide catalyst. Nature Communications, 2017, 8, 15240.	5.8	57
71	Interlayerâ€Expanded Microporous Titanosilicate Catalysts with Functionalized Hydroxyl Groups. ChemCatChem, 2011, 3, 1442-1446.	1.8	56
72	Solventâ€Free Synthesis of Zeolite Crystals Encapsulating Gold–Palladium Nanoparticles for the Selective Oxidation of Bioethanol. ChemSusChem, 2015, 8, 2867-2871.	3.6	56

#	Article	IF	CITATIONS
73	Combination of binary active sites into heterogeneous porous polymer catalysts for efficient transformation of CO2 under mild conditions. Chinese Journal of Catalysis, 2021, 42, 618-626.	6.9	56
74	Superior performance in catalytic combustion of toluene over mesoporous ZSM-5 zeolite supported platinum catalyst. Catalysis Today, 2015, 258, 190-195.	2.2	55
75	Direct observation of tin sites and their reversible interconversion in zeolites by solid-state NMR spectroscopy. Communications Chemistry, 2018, 1, .	2.0	54
76	Organotemplate-free, seed-directed, and rapid synthesis of Al-rich zeolite MTT with improved catalytic performance in isomerization of m-xylene. Microporous and Mesoporous Materials, 2014, 186, 106-112.	2.2	52
77	Transformation synthesis of aluminosilicate SSZ-39 zeolite from ZSM-5 and beta zeolite. Journal of Materials Chemistry A, 2019, 7, 4420-4425.	5.2	52
78	Dispersed Nickel Boosts Catalysis by Copper in CO ₂ Hydrogenation. ACS Catalysis, 2020, 10, 9261-9270.	5.5	52
79	Organotemplate-free and seed-directed synthesis of levyne zeolite. Microporous and Mesoporous Materials, 2012, 155, 1-7.	2.2	51
80	Atomically Dispersed Ru on Manganese Oxide Catalyst Boosts Oxidative Cyanation. ACS Catalysis, 2020, 10, 6299-6308.	5.5	51
81	Seed-directed and organotemplate-free synthesis of TON zeolite. Catalysis Today, 2014, 226, 103-108.	2.2	50
82	Hydrophobic Zeolite Containing Titania Particles as Wettability-Selective Catalyst for Formaldehyde Removal. ACS Catalysis, 2018, 8, 5250-5254.	5.5	50
83	Superior Performance in Catalytic Combustion of Toluene over KZSM-5 Zeolite Supported Platinum Catalyst. Catalysis Letters, 2014, 144, 1851-1859.	1.4	49
84	Solvent-free and Mesoporogen-free Synthesis of Mesoporous Aluminosilicate ZSM-5 Zeolites with Superior Catalytic Properties in the Methanol-to-Olefins Reaction. Industrial & Engineering Chemistry Research, 2017, 56, 1450-1460.	1.8	49
85	Catalytically active and hierarchically porous SAPO-11 zeolite synthesized in the presence of polyhexamethylene biguanidine. Journal of Colloid and Interface Science, 2014, 418, 193-199.	5.0	48
86	Creation of BrÃ,nsted acid sites on Sn-based solid catalysts for the conversion of biomass. Journal of Materials Chemistry A, 2014, 2, 3725.	5.2	48
87	Strategies for the design of porous polymers as efficient heterogeneous catalysts: from co-polymerization to self-polymerization. Catalysis Science and Technology, 2017, 7, 1028-1039.	2.1	48
88	Stable Bulky Particles Formed by TSâ€1 Zeolite Nanocrystals in the Presence of H ₂ O ₂ . ChemCatChem, 2010, 2, 407-412.	1.8	47
89	Sustainable Synthesis of Pure Silica Zeolites from a Combined Strategy of Zeolite Seeding and Alcohol Filling. Angewandte Chemie - International Edition, 2019, 58, 12138-12142.	7.2	47
90	Evolution of D6R units in the interzeolite transformation from FAU, MFI or *BEA into AEI: transfer or reassembly?. Inorganic Chemistry Frontiers, 2020, 7, 2204-2211.	3.0	47

#	Article	IF	CITATIONS
91	Interzeolite transformation from FAU to CHA and MFI zeolites monitored by UV Raman spectroscopy. Chinese Journal of Catalysis, 2019, 40, 1854-1859.	6.9	46
92	Porous Polymerized Organocatalysts Rationally Synthesized from the Corresponding Vinyl-Functionalized Monomers as Efficient Heterogeneous Catalysts. ACS Catalysis, 2015, 5, 1556-1559.	5.5	45
93	Ordered mesoporous titanosilicates with catalytically stable and active four-coordinated titanium sites. Chemical Communications, 2004, , 2612.	2.2	44
94	Organotemplate-Free Syntheses of ZSM-34 Zeolite and Its Heteroatom-Substituted Analogues with Good Catalytic Performance. Chemistry of Materials, 2010, 22, 3099-3107.	3.2	44
95	Insights into the Organotemplate-Free Synthesis of Zeolite Catalysts. Engineering, 2017, 3, 567-574.	3.2	44
96	Mechanism on solvent-free crystallization of NaA zeolite. Microporous and Mesoporous Materials, 2017, 237, 201-209.	2.2	43
97	Importance of controllable Al sites in CHA framework by crystallization pathways for NH3-SCR reaction. Applied Catalysis B: Environmental, 2020, 277, 119193.	10.8	43
98	"Solvent-free―synthesis of thermally stable and hierarchically porous aluminophosphates (SF-APOs) and heteroatom-substituted aluminophosphates (SF-MAPOs). Journal of Materials Chemistry, 2011, 21, 12026.	6.7	39
99	Organotemplate-free and seed-directed synthesis of ZSM-34 zeolite with good performance in methanol-to-olefins. Journal of Materials Chemistry, 2012, 22, 12238.	6.7	39
100	Superhydrophobic, chiral, and mesoporous TsDPEN copolymer coordinated to ruthenium species as an efficient catalyst for asymmetric transfer hydrogenation. Nano Today, 2013, 8, 342-350.	6.2	39
101	Potassium-directed sustainable synthesis of new high silica small-pore zeolite with KFI structure (ZJM-7) as an efficient catalyst for NH3-SCR reaction. Applied Catalysis B: Environmental, 2021, 281, 119480.	10.8	39
102	High temperature synthesis of high silica zeolite Y with good crystallinity in the presence of N-methylpyridinium iodide. Chemical Communications, 2013, 49, 10495.	2.2	38
103	Catalytic performance for toluene abatement over Al-rich Beta zeolite supported manganese oxides. Catalysis Today, 2017, 297, 182-187.	2.2	36
104	One-pot synthesis of Fe-Beta zeolite by an organotemplate-free and seed-directed route. Journal of Materials Chemistry A, 2013, 1, 3254.	5.2	35
105	Development of a post-synthetic method for tuning the Al content of OSDA-free Beta as a catalyst for conversion of methanol to olefins. Catalysis Science and Technology, 2016, 6, 713-721.	2.1	35
106	Recent advances in the preparation of zeolites for the selective catalytic reduction of NOx in diesel engines. Reaction Chemistry and Engineering, 2019, 4, 975-985.	1.9	35
107	Strong Oxide–Support Interactions Accelerate Selective Dehydrogenation of Propane by Modulating the Surface Oxygen. ACS Catalysis, 2020, 10, 10559-10569.	5.5	35
108	Selective Hydrogenation of CO ₂ to Ethanol over Cobalt Catalysts. Angewandte Chemie, 2018, 130, 6212-6216.	1.6	34

#	Article	IF	CITATIONS
109	Direct Synthesis of Aluminosilicate SSZ-39 Zeolite Using Colloidal Silica as a Starting Source. ACS Applied Materials & Interfaces, 2019, 11, 23112-23117.	4.0	34
110	Design and Preparation of Supported Au Catalyst with Enhanced Catalytic Activities by Rationally Positioning Au Nanoparticles on Anatase. Journal of Physical Chemistry Letters, 2015, 6, 2345-2349.	2.1	32
111	Solvent-free synthesis of zeolite catalysts. Science China Chemistry, 2015, 58, 6-13.	4.2	31
112	Generalized high-temperature synthesis of zeolite catalysts with unpredictably high space-time yields (STYs). Journal of Materials Chemistry A, 2017, 5, 2613-2618.	5.2	31
113	An efficient, rapid, and non-centrifugation synthesis of nanosized zeolites by accelerating the nucleation rate. Journal of Materials Chemistry A, 2018, 6, 21156-21161.	5.2	31
114	Recyclable Porous Polymerâ€Supported Copper Catalysts for Glaser and Huisgen 1,3â€Diolar Cycloaddition Reactions. Chemistry - an Asian Journal, 2013, 8, 2822-2827.	1.7	30
115	Direct Synthesis of Aluminosilicate IWR Zeolite from a Strong Interaction between Zeolite Framework and Organic Template. Journal of the American Chemical Society, 2019, 141, 18318-18324.	6.6	30
116	Exceptional activity for formaldehyde combustion using siliceous Beta zeolite as a catalyst support. Catalysis Today, 2020, 339, 174-180.	2.2	30
117	Copperâ€Incorporated Porous Polydivinylbenzene as Efficient and Recyclable Heterogeneous Catalyst in Ullmann Biaryl Ether Coupling. ChemCatChem, 2013, 5, 1606-1613.	1.8	29
118	Mn-promoted Ag supported on pure siliceous Beta zeolite (Ag/Beta-Si) for catalytic combustion of formaldehyde. Applied Catalysis B: Environmental, 2020, 268, 118461.	10.8	29
119	Organotemplate-free and one-pot fabrication of nano-rod assembled plate-like micro-sized mordenite crystals. Journal of Materials Chemistry, 2012, 22, 6564.	6.7	28
120	Fe-ZSM-5 supported palladium nanoparticles as an efficient catalyst for toluene abatement. Catalysis Today, 2019, 332, 195-200.	2.2	28
121	Aluminum Fluoride Modified HZSM-5 Zeolite with Superior Performance in Synthesis of Dimethyl Ether from Methanol. Energy & Fuels, 2012, 26, 4475-4480.	2.5	27
122	Ultrathin nanosheets of aluminosilicate FER zeolites synthesized in the presence of a sole small organic ammonium. Journal of Materials Chemistry A, 2019, 7, 16671-16676.	5.2	27
123	An efficient synthesis of NaA zeolite membranes from direct crystallization of gel-dipped macroporous alumina tubes with seeds. Journal of Materials Chemistry A, 2018, 6, 10484-10489.	5.2	26
124	Selective conversion of syngas to propane over ZnCrO -SSZ-39 OX-ZEO catalysts. Journal of Energy Chemistry, 2019, 36, 141-147.	7.1	26
125	Mesoporous Solid Acid Catalysts. Catalysis Surveys From Asia, 2011, 15, 37-48.	1.0	25
126	Enhancement of hydroformylation performance via increasing the phosphine ligand concentration in porous organic polymer catalysts. Catalysis Today, 2017, 298, 40-45.	2.2	24

#	Article	IF	CITATIONS
127	Host–Guest Interactions and Their Catalytic Consequences in Methanol to Olefins Conversion on Zeolites Studied by ¹³ C– ²⁷ Al Double-Resonance Solid-State NMR Spectroscopy. ACS Catalysis, 2017, 7, 6094-6103.	5.5	24
128	A porous BrÃ,nsted superacid as an efficient and durable solid catalyst. Journal of Materials Chemistry A, 2018, 6, 18712-18719.	5.2	24
129	Location matters: cooperativity of catalytic partners in porous organic polymers for enhanced CO ₂ transformation. Chemical Communications, 2019, 55, 9180-9183.	2.2	24
130	<i>110th Anniversary:</i> Sustainable Synthesis of Zeolites: From Fundamental Research to Industrial Production. Industrial & amp; Engineering Chemistry Research, 2019, 58, 11653-11658.	1.8	24
131	Design of a Small Organic Template for the Synthesis of Self-Pillared Pentasil Zeolite Nanosheets. Journal of the American Chemical Society, 2022, 144, 6270-6277.	6.6	24
132	Porous polymer supported palladium catalyst for cross coupling reactions with high activity and recyclability. Science China Chemistry, 2012, 55, 2095-2103.	4.2	23
133	Alcohol-assisted synthesis of high-silica zeolites in the absence of organic structure-directing agents. Chinese Journal of Catalysis, 2021, 42, 563-570.	6.9	23
134	Efficient synthesis of aluminosilicate RTH zeolite with good catalytic performances in NH ₃ -SCR and MTO reactions. Journal of Materials Chemistry A, 2018, 6, 8705-8711.	5.2	22
135	A Cationic Oligomer as an Organic Template for Direct Synthesis of Aluminosilicate ITH Zeolite. Angewandte Chemie - International Edition, 2020, 59, 15649-15655.	7.2	22
136	Cu-Exchanged CHA-Type Zeolite from Organic Template-Free Synthesis: An Effective Catalyst for NH ₃ -SCR. Industrial & Engineering Chemistry Research, 2020, 59, 7375-7382.	1.8	22
137	Solvent-free synthesis of SAPO-5 zeolite with plate-like morphology in the presence of surfactants. Chinese Journal of Catalysis, 2015, 36, 797-800.	6.9	21
138	Mapping Al Distributions in SSZ-13 Zeolites from ²³ Na Solid-State NMR Spectroscopy and DFT Calculations. Journal of Physical Chemistry C, 2018, 122, 9973-9979.	1.5	21
139	Enhancement of Catalytic Activity in Epoxide Hydration by Increasing the Concentration of Cobalt(III)/Salen in Porous Polymer Catalysts. ChemCatChem, 2016, 8, 812-817.	1.8	20
140	Bio-inspired creation of heterogeneous reaction vessels via polymerization of supramolecular ion pair. Nature Communications, 2019, 10, 3059.	5.8	19
141	Self-formation of hierarchical SAPO-11 molecular sieves as an efficient hydroisomerization support. Catalysis Today, 2020, 350, 165-170.	2.2	18
142	Recent strategies for synthesis of metallosilicate zeolites. Catalysis Today, 2022, 390-391, 2-11.	2.2	18
143	Recent advances of zeolites in catalytic oxidations of volatile organic compounds. Catalysis Today, 2023, 410, 56-67.	2.2	18
144	Mgâ€Al Mixed Oxides Supported Bimetallic Auâ€Pd Nanoparticles with Superior Catalytic Properties in Aerobic Oxidation of Benzyl Alcohol and Glycerol. Chinese Journal of Chemistry, 2012, 30, 2189-2197.	2.6	17

#	Article	IF	CITATIONS
145	Enhanced synthetic efficiency of CHA zeolite crystallized at higher temperatures. Catalysis Today, 2018, 316, 31-36.	2.2	17
146	Enhanced catalytic performance of methane combustion over zeolite-supported Pd catalysts with the lanthanum. Catalysis Today, 2021, 364, 16-20.	2.2	16
147	Solventâ€Free Synthesis of <scp>ITQ</scp> â€12, <scp>ITQ</scp> â€13, and <scp>ITQ</scp> â€17 Zeolites. Chine Journal of Chemistry, 2017, 35, 572-576.	2.6	15
148	<i>N-</i> Oxyl Radicals Trapped on Zeolite Surface Accelerate Photocatalysis. ACS Catalysis, 2019, 9, 10448-10453.	5.5	15
149	Mesoporous EU-1 zeolite synthesized in the presence of cationic polymer. Microporous and Mesoporous Materials, 2016, 235, 246-252.	2.2	14
150	Nanorod Manganese Oxide as an Efficient Heterogeneous Catalyst for Hydration of Nitriles into Amides. Industrial & Engineering Chemistry Research, 2019, 58, 17319-17324.	1.8	14
151	Advances in the synthesis and application of the SSZ-39 zeolite. Inorganic Chemistry Frontiers, 2022, 9, 1047-1057.	3.0	14
152	Co-salen functionalized on graphene as an efficient heterogeneous catalyst for cyclohexene oxidation. Journal of Energy Chemistry, 2013, 22, 48-51.	7.1	13
153	Improved catalytic activity in methanol electro-oxidation over the nickel form of aluminum-rich beta-SDS zeolite modified electrode. Journal of Materials Chemistry A, 2015, 3, 5811-5814.	5.2	13
154	Sustainable and efficient synthesis of nanosized EMT zeolites under solvent-free and organotemplate-free conditions. Microporous and Mesoporous Materials, 2019, 286, 105-109.	2.2	13
155	High-temperature hydrothermal synthesis of magnetically active, ordered mesoporous resin and carbon monoliths with reusable adsorption for organic dye. Adsorption, 2013, 19, 39-47.	1.4	12
156	Interfacial CoO _{<i>x</i>} Layers on TiO ₂ as an Efficient Catalyst for Solventâ€Free Aerobic Oxidation of Hydrocarbons. ChemSusChem, 2018, 11, 3965-3974.	3.6	12
157	Solvent-free crystallization of ZSM-5 zeolite on SiC foam as a monolith catalyst for biofuel upgrading. Chinese Journal of Catalysis, 2020, 41, 1118-1124.	6.9	12
158	Design of Cobalt–Amine Complex as an Efficient Structure-Directing Agent for One-Pot Synthesis of Co-SSZ-13 Zeolite. Journal of Physical Chemistry C, 2021, 125, 16343-16349.	1.5	12
159	Zeolites for control of NO emissions: Opportunities and challenges. Chem Catalysis, 2022, 2, 253-261.	2.9	12
160	Porous Organic Polymers Constructed from Tröger's Base as Efficient Carbon Dioxide Adsorbents and Heterogeneous Catalysts. ChemCatChem, 2018, 10, 1900-1904.	1.8	11
161	Boosting the hydrolytic stability of phosphite ligand in hydroformylation by the construction of superhydrophobic porous framework. Molecular Catalysis, 2019, 474, 110408.	1.0	11
162	Enhanced catalytic activity in propene oxidation over NaZSM-5 zeolite-supported Pt nanoparticles by increasing the zeolite Si/Al ratio. Catalysis Today, 2020, 355, 476-481.	2.2	11

#	Article	IF	CITATIONS
163	Illuminating solvent-free synthesis of zeolites. Dalton Transactions, 2020, 49, 6939-6944.	1.6	11
164	Zeolite Catalysts for Green Production of Caprolactam. Industrial & Engineering Chemistry Research, 2023, 62, 2217-2224.	1.8	10
165	Design Synthesis of ITE Zeolite Using Nickel–Amine Complex as an Efficient Structure-Directing Agent. ACS Applied Materials & Interfaces, 2018, 10, 33214-33220.	4.0	9
166	Organosilane surfactant-assisted synthesis of mesoporous SSZ-39 zeolite with enhanced catalytic performance in the methanol-to-olefins reaction. Frontiers of Chemical Science and Engineering, 2020, 14, 267-274.	2.3	9
167	Porous Organic Phenanthrolineâ€Based Polymer as an Efficient Transitionâ€Metalâ€Free Heterogeneous Catalyst for Direct Aromatic Câ~'H Activation. Chemistry - A European Journal, 2021, 27, 8684-8688.	1.7	9
168	Metalated Porous Phenanthrolineâ€Based Polymers as Efficient Heterogeneous Catalysts for Regioselective Câ^'H Activation of Heteroarenes. Chemistry - an Asian Journal, 2021, 16, 2469-2474.	1.7	9
169	Recent Advances of Beta Zeolite in the Volatile Organic Compounds(VOCs) Elimination by the Catalytic Oxidations. Chemical Research in Chinese Universities, 2022, 38, 716-722.	1.3	9
170	Design of fast crystallization of nanosized zeolite omega crystals at higher temperatures. Chinese Journal of Catalysis, 2019, 40, 1093-1099.	6.9	8
171	Role of water as a coporogen in the synthesis of mesoporous poly(divinylbenzenes). Journal of Applied Polymer Science, 2014, 131, .	1.3	7
172	Sustainable one-pot preparation of fully crystalline shaped zeolite catalysts. Catalysis Science and Technology, 2021, 11, 5650-5655.	2.1	7
173	Organotemplateâ€Free Synthesis of a Highâ€Silica Zeolite with a TON Structure in the Absence of Zeolite Seeds. European Journal of Inorganic Chemistry, 2016, 2016, 1364-1368.	1.0	6
174	A Pd-metalated porous organic polymer as a highly efficient heterogeneous catalyst for C–C couplings. Chinese Journal of Catalysis, 2016, 37, 54-60.	6.9	6
175	Sustainable Synthesis of Core-shell Structured ZSM-5@Silicalite-1 Zeolite. Chemical Research in Chinese Universities, 2022, 38, 136-140.	1.3	6
176	Rareâ€earth Yttrium Exchanged Cuâ€SSZâ€39 Zeolite with Superior Hydrothermal Stability and SO ₂ â€Tolerance in NH ₃ â€SCR of NO <i>x</i> . ChemCatChem, 2022, 14, .	1.8	6
177	Synthesis of Aluminophosphate Molecular Sieves in Alkaline Media. Chemistry - A European Journal, 2020, 26, 11408-11411.	1.7	5
178	Recent advances in organotemplate-free synthesis of zeolites. Current Opinion in Green and Sustainable Chemistry, 2020, 25, 100363.	3.2	4
179	One-pot fabrication of metal-zeolite catalysts from a combination of solvent-free and sodium-free routes. Catalysis Today, 2021, 371, 64-68.	2.2	4
180	Fluoride-free synthesis of anatase TiO2 crystals rich in (001) facets in the presence of cationic polymer. Chinese Journal of Catalysis, 2013, 34, 2004-2008.	6.9	3

#	Article	IF	CITATIONS
181	Sustainable Synthesis of Pure Silica Zeolites from a Combined Strategy of Zeolite Seeding and Alcohol Filling. Angewandte Chemie, 2019, 131, 12266-12270.	1.6	3
182	Calcination-Free Fabrication of Highly b-Oriented Silicalite-1 Zeolite Films by Secondary Growth in the Absence of Organic Structure-Directing Agents. Industrial & Engineering Chemistry Research, 2021, 60, 7167-7173.	1.8	3
183	Sustainable Routes for Zeolite Synthesis. Green Chemistry and Sustainable Technology, 2016, , 3-35.	0.4	2
184	Theoretical Prediction from Classical Equations and Rational Synthesis of Ultrafine LTL Zeolite Nanocrystals. Journal of Physical Chemistry C, 2020, 124, 13819-13824.	1.5	2
185	A Cationic Oligomer as an Organic Template for Direct Synthesis of Aluminosilicate ITH Zeolite. Angewandte Chemie, 2020, 132, 15779-15785.	1.6	1
186	Hierarchial Zeolites: Beyond Creation of Mesoporosity: The Advantages of Polymerâ€Based Dualâ€Function Templates for Fabricating Hierarchical Zeolites (Adv. Funct. Mater. 12/2016). Advanced Functional Materials, 2016, 26, 1854-1854.	7.8	0
187	Surprising separation selectivity of ethylene from ethane over pure siliceous zeolites with framework flexibility. Science China Materials, 2018, 61, 763-764.	3.5	0
188	Recent Development of Bio-inspired Porous Materials for Catalytic Applications. Chemical Research in Chinese Universities, 0, , .	1.3	0