
Joao H F Pedra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1792147/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Epigenetic Regulation of Tick Biology and Vectorial Capacity. Trends in Genetics, 2021, 37, 8-11.	6.7	8
2	The genus <i>Anaplasma</i> : drawing back the curtain on tick–pathogen interactions. Pathogens and Disease, 2021, 79, .	2.0	7
3	Tick extracellular vesicles enable arthropod feeding and promote distinct outcomes of bacterial infection. Nature Communications, 2021, 12, 3696.	12.8	27
4	Grappling with the tick microbiome. Trends in Parasitology, 2021, 37, 722-733.	3.3	51
5	Protective Immunity and New Vaccines for Lyme Disease. Clinical Infectious Diseases, 2020, 70, 1768-1773.	5.8	50
6	Interactions between Borrelia burgdorferi and ticks. Nature Reviews Microbiology, 2020, 18, 587-600.	28.6	112
7	Ticks Resist Skin Commensals with Immune Factor of Bacterial Origin. Cell, 2020, 183, 1562-1571.e12.	28.9	31
8	Immunometabolism in Arthropod Vectors: Redefining Interspecies Relationships. Trends in Parasitology, 2020, 36, 807-815.	3.3	13
9	Lipid hijacking: A unifying theme in vector-borne diseases. ELife, 2020, 9, .	6.0	41
10	Message in a vesicle – trans-kingdom intercommunication at the vector–host interface. Journal of Cell Science, 2019, 132, .	2.0	27
11	p47 licenses activation of the immune deficiency pathway in the tick <i>lxodes scapularis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 205-210.	7.1	29
12	Vector Immunity and Evolutionary Ecology: The Harmonious Dissonance. Trends in Immunology, 2018, 39, 862-873.	6.8	33
13	Infection-derived lipids elicit an immune deficiency circuit in arthropods. Nature Communications, 2017, 8, 14401.	12.8	103
14	Engineering of obligate intracellular bacteria: progress, challenges and paradigms. Nature Reviews Microbiology, 2017, 15, 544-558.	28.6	144
15	Tick Humoral Responses: Marching to the Beat of a Different Drummer. Frontiers in Microbiology, 2017, 8, 223.	3.5	29
16	Deviant Behavior: Tick-Borne Pathogens and Inflammasome Signaling. Veterinary Sciences, 2016, 3, 27.	1.7	8
17	The Tick Protein Sialostatin L2 Binds to Annexin A2 and Inhibits NLRC4-Mediated Inflammasome Activation. Infection and Immunity, 2016, 84, 1796-1805.	2.2	47
18	For Whom the Bell Tolls (and Nods): Spit-acular Saliva. Current Tropical Medicine Reports, 2016, 3, 40-50.	3.7	8

Joao H F Pedra

#	Article	IF	CITATIONS
19	All For One and One For All on the Tick–Host Battlefield. Trends in Parasitology, 2016, 32, 368-377.	3.3	88
20	Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nature Communications, 2016, 7, 10507.	12.8	450
21	Sialomes and Mialomes: A Systems-Biology View of Tick Tissues and Tick–Host Interactions. Trends in Parasitology, 2016, 32, 242-254.	3.3	123
22	The Prostaglandin E2-EP3 Receptor Axis Regulates Anaplasma phagocytophilum-Mediated NLRC4 Inflammasome Activation. PLoS Pathogens, 2016, 12, e1005803.	4.7	31
23	Modulation of host immunity by tick saliva. Journal of Proteomics, 2015, 128, 58-68.	2.4	196
24	Deep Sequencing Analysis of the Ixodes ricinus Haemocytome. PLoS Neglected Tropical Diseases, 2015, 9, e0003754.	3.0	29
25	Altered Th17/Treg balance and dysregulated IL-1β response influence susceptibility/resistance to experimental autoimmune arthritis. International Journal of Immunopathology and Pharmacology, 2015, 28, 318-328.	2.1	17
26	The Tick Salivary Protein Sialostatin L2 Inhibits Caspase-1-Mediated Inflammation during Anaplasma phagocytophilum Infection. Infection and Immunity, 2014, 82, 2553-2564.	2.2	51
27	Sterol Regulatory Element Binding Protein 2 Activation of NLRP3 Inflammasome in Endothelium Mediates Hemodynamic-Induced Atherosclerosis Susceptibility. Circulation, 2013, 128, 632-642.	1.6	215
28	The E3 Ubiquitin Ligase XIAP Restricts Anaplasma phagocytophilum Colonization of Ixodes scapularis Ticks. Journal of Infectious Diseases, 2013, 208, 1830-1840.	4.0	52
29	The â€~ubiquitous' reality of vector immunology. Cellular Microbiology, 2013, 15, 1070-1078.	2.1	20
30	Tryptogalinin Is a Tick Kunitz Serine Protease Inhibitor with a Unique Intrinsic Disorder. PLoS ONE, 2013, 8, e62562.	2.5	32
31	NSD1 Mitigates Caspase-1 Activation by Listeriolysin O in Macrophages. PLoS ONE, 2013, 8, e75911.	2.5	12
32	Decoding the Ubiquitin-Mediated Pathway of Arthropod Disease Vectors. PLoS ONE, 2013, 8, e78077.	2.5	16
33	A Nod to disease vectors: mitigation of pathogen sensing by arthropod saliva. Frontiers in Microbiology, 2013, 4, 308.	3.5	5
34	Anaplasma phagocytophilum Dihydrolipoamide Dehydrogenase 1 Affects Host-Derived Immunopathology during Microbial Colonization. Infection and Immunity, 2012, 80, 3194-3205.	2.2	29
35	<i>Anaplasma phagocytophilum</i> : deceptively simple or simply deceptive?. Future Microbiology, 2012, 7, 719-731.	2.0	31
36	Tick salivary secretion as a source of antihemostatics. Journal of Proteomics, 2012, 75, 3842-3854.	2.4	104

Joao H F Pedra

#	Article	IF	CITATIONS
37	Ixodes scapularis saliva mitigates inflammatory cytokine secretion during Anaplasma phagocytophilum stimulation of immune cells. Parasites and Vectors, 2012, 5, 229.	2.5	40
38	Receptor interacting protein-2 contributes to host defense against <i>Anaplasma phagocytophilum</i> infection. FEMS Immunology and Medical Microbiology, 2012, 66, 211-219.	2.7	24
39	Fucosylation enhances colonization of ticks by Anaplasma phagocytophilum. Cellular Microbiology, 2010, 12, 1222-1234.	2.1	44
40	The Inflammasome in Host Defense. Sensors, 2010, 10, 97-111.	3.8	15
41	Sensing pathogens and danger signals by the inflammasome. Current Opinion in Immunology, 2009, 21, 10-16.	5.5	205
42	c-Jun NH ₂ -Terminal Kinase 2 Inhibits Gamma Interferon Production during <i>Anaplasma phagocytophilum</i> Infection. Infection and Immunity, 2008, 76, 308-316.	2.2	16
43	ASC/PYCARD and Caspase-1 Regulate the IL-18/IFN-γ Axis during <i>Anaplasma phagocytophilum</i> Infection. Journal of Immunology, 2007, 179, 4783-4791.	0.8	75
44	IL-12/23p40-dependent clearance ofAnaplasma phagocytophilumin the murine model of human anaplasmosis. FEMS Immunology and Medical Microbiology, 2007, 50, 401-410.	2.7	23
45	DISRUPTION OF THE SALIVARY PROTEIN 14 IN IXODES SCAPULARIS NYMPHS AND IMPACT ON PATHOGEN ACQUISITION. American Journal of Tropical Medicine and Hygiene, 2006, 75, 677-682.	1.4	21
46	Disruption of the salivary protein 14 in Ixodes scapularis nymphs and impact on pathogen acquisition. American Journal of Tropical Medicine and Hygiene, 2006, 75, 677-82.	1.4	9
47	Profiling of abundant proteins associated with dichlorodiphenyltrichloroethane resistance inDrosophila melanogaster. Proteomics, 2005, 5, 258-269.	2.2	29
48	Modulation of NB4 promyelocytic leukemic cell machinery by Anaplasma phagocytophilum. Genomics, 2005, 86, 365-377.	2.9	42
49	Genome-wide transcription profile of field- and laboratory-selected dichlorodiphenyltrichloroethane (DDT)-resistant Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7034-7039.	7.1	202
50	Hyper-susceptibility to deltamethrin in parats-1 DDT resistant Drosophila melanogaster. Pesticide Biochemistry and Physiology, 2004, 78, 58-66.	3.6	12
51	Transcriptome analysis of the cowpea weevil bruchid: identification of putative proteinases and alpha-amylases associated with food breakdown. Insect Molecular Biology, 2003, 12, 405-412.	2.0	39
52	Transcriptome identification of putative genes involved in protein catabolism and innate immune response in human body louse (Pediculicidae: Pediculus humanus). Insect Biochemistry and Molecular Biology, 2003, 33, 1135-1143.	2.7	15
53	Differential expression and induction of two Drosophila cytochrome P450 genes near the Rst(2)DDT locus. Insect Molecular Biology, 2002, 11, 337-341.	2.0	91
54	A sucrose binding protein homologue from soybean affects sucrose uptake in suspension-cultured transgenic tobacco cells. Plant Physiology and Biochemistry, 2000, 38, 353-361.	5.8	20

#	Article	IF	CITATIONS
55	Antisense and sense expression of a sucrose binding protein homologue gene from soybean in transgenic tobacco affects plant growth and carbohydrate partitioning in leaves. Plant Science, 2000, 152, 87-98.	3.6	32