
Raj Cibin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/179203/publications.pdf Version: 2024-02-01

DAL CIRIN

#	Article	IF	CITATIONS
1	Reconceptualizing HRU Threshold Definition in the Soil and Water Assessment Tool. Journal of the American Water Resources Association, 2022, 58, 508-516.	1.0	6
2	Reliability of Hydrology and Water Quality Simulations Using Global Scale Datasets. Journal of the American Water Resources Association, 2022, 58, 453-470.	1.0	2
3	Toward a Robust Land Suitability Framework for Manure Management: Modeling Impacts and Evaluating Biophysical Characteristics. Journal of the American Water Resources Association, 2022, 58, 435-452.	1.0	0
4	Minimizing environmental impacts of solar farms: a review of current science on landscape hydrology and guidance on stormwater management. Environmental Research: Infrastructure and Sustainability, 2022, 2, 032002.	0.9	11
5	Reallocating crop rotation patterns improves water quality and maintains crop yield. Agricultural Systems, 2021, 187, 103015.	3.2	13
6	Mitigating lake eutrophication through stakeholder-driven hydrologic modeling of agricultural conservation practices: A case study of Lake Macatawa, Michigan. Journal of Great Lakes Research, 2021, 47, 1710-1725.	0.8	8
7	Riparian buffer effectiveness as a function of buffer design and input loads. Journal of Environmental Quality, 2020, 49, 1599-1611.	1.0	12
8	Manuresheds: Advancing nutrient recycling in US agriculture. Agricultural Systems, 2020, 182, 102813.	3.2	75
9	Environmental impacts of bioenergy crop production and benefits of multifunctional bioenergy systems. , 2019, , 195-217.		22
10	Hydrologic responses to projected climate change in ecologically diverse watersheds of the Gulf Coast, United States. International Journal of Climatology, 2019, 39, 2227-2243.	1.5	11
11	<i>Assessment of riparian buffers' effectiveness in controlling nutrient and sediment loads as a function of buffer design, site characteristics and upland loadings</i> . , 2019, , .		0
12	The effects of disproportional load contributions on quantifying vegetated filter strip sediment trapping efficiencies. Stochastic Environmental Research and Risk Assessment, 2018, 32, 2369-2380.	1.9	5
13	Evaluation of bioenergy crop growth and the impacts of bioenergy crops on streamflow, tile drain flow and nutrient losses in an extensively tile-drained watershed using SWAT. Science of the Total Environment, 2018, 613-614, 724-735.	3.9	49
14	<i>Geospatial Landscape Analysis for Livestock Manure Management in Western Pennsylvania</i> . , 2018, , .		6
15	Parameter estimation of SWAT and quantification of consequent confidence bands of model simulations. Environmental Earth Sciences, 2018, 77, 1.	1.3	14
16	An Improved Representation of Vegetative Filter Strips in SWAT. Transactions of the ASABE, 2018, 61, 1017-1024.	1.1	12
17	Perennial biomass production from marginal land in the Upper Mississippi River Basin. Land Degradation and Development, 2018, 29, 1748-1755.	1.8	21
18	Marginal land suitability for switchgrass, Miscanthus and hybrid poplar in the Upper Mississippi River Basin (UMRB). Environmental Modelling and Software, 2017, 93, 356-365.	1.9	45

Raj Cibin

#	Article	IF	CITATIONS
19	Integrated Economic and Environmental Assessment of Cellulosic Biofuel Production in an Agricultural Watershed. Bioenergy Research, 2017, 10, 509-524.	2.2	16
20	Water Quality Assessment of Largeâ€scale Bioenergy Cropping Scenarios for the Upper Mississippi and Ohioâ€Tennessee River Basins. Journal of the American Water Resources Association, 2017, 53, 1355-1367.	1.0	24
21	Influence of Bioenergy Crop Production and Climate Change on Ecosystem Services. Journal of the American Water Resources Association, 2017, 53, 1323-1335.	1.0	6
22	Biophysical and hydrological effects of future climate change including trends in CO2, in the St. Joseph River watershed, Eastern Corn Belt. Agricultural Water Management, 2017, 180, 280-296.	2.4	44
23	Policy Implications from Multiâ€scale Watershed Models of Biofuel Crop Adoption across the Corn Belt. Journal of the American Water Resources Association, 2017, 53, 1313-1322.	1.0	10
24	Assessment of Bioenergy Cropping Scenarios for the Boone River Watershed in North Central Iowa, United States. Journal of the American Water Resources Association, 2017, 53, 1336-1354.	1.0	17
25	Comparative Analysis of HRU and Grid-Based SWAT Models. Water (Switzerland), 2017, 9, 272.	1.2	36
26	Simulating Establishment Periods of Switchgrass and Miscanthus in the Soil and Water Assessment Tool (SWAT). Transactions of the ASABE, 2017, 60, 1621-1632.	1.1	5
27	Optimal selection and placement of BMPs and LID practices with a rainfall-runoff model. Environmental Modelling and Software, 2016, 80, 281-296.	1.9	113
28	Watershedâ€scale impacts of bioenergy crops on hydrology and water quality using improved <scp>SWAT</scp> model. GCB Bioenergy, 2016, 8, 837-848.	2.5	76
29	Hydrologic and water quality impacts and biomass production potential on marginal land. Environmental Modelling and Software, 2015, 72, 230-238.	1.9	41
30	Perennial rhizomatous grasses as bioenergy feedstock in SWAT : parameter development and model improvement. GCB Bioenergy, 2015, 7, 1185-1202.	2.5	56
31	Environmental and Economic Trade-Offs in a Watershed When Using Corn Stover for Bioenergy. Environmental Science & Technology, 2013, 47, 1784-1791.	4.6	53
32	A MULTI-CRITERIA-BASED APPROACH TO QUANTIFY PREDICTIVE UNCERTAINTY OF DISTRIBUTED MODELS WHEN APPLIED TO UNGAUGED BASINS. , 0, , 75-88.		0