
Guolin Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1791833/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-performance ionic conductive poly(vinyl alcohol) hydrogels for flexible strain sensors based on a universal soaking strategy. Materials Chemistry Frontiers, 2021, 5, 315-323.	5.9	51
2	Bioinspired, nucleobase-driven, highly resilient, and fast-responsive antifreeze ionic conductive hydrogels for durable pressure and strain sensors. Journal of Materials Chemistry A, 2021, 9, 20703-20713.	10.3	55
3	A bio-inspired fluorescent nano-injectable hydrogel as a synergistic drug delivery system. New Journal of Chemistry, 2021, 45, 3079-3087.	2.8	8
4	Synergy between Clinical Microenvironment Targeted Nanoplatform and Near-Infrared Light Irradiation for Managing <i>Pseudomonas aeruginosa</i> Infections. ACS Applied Materials & Interfaces, 2021, 13, 38979-38989.	8.0	15
5	Bioinspired tough, conductive hydrogels with thermally reversible adhesiveness based on nanoclay confined NIPAM polymerization and a dopamine modified polypeptide. Materials Chemistry Frontiers, 2020, 4, 189-196.	5.9	33
6	Facile preparation of tertiary amine grafted poly (α,β-L-aspartic acid) with zwitterionic property to limit nonspecific protein adsorption. Journal of Dispersion Science and Technology, 2020, , 1-10.	2.4	2
7	Radionuclide 188 Reâ€Loaded Photothermal Hydrogel for Cancer Theranostics. Particle and Particle Systems Characterization, 2020, 37, 1900421.	2.3	8
8	Poly(N-isopropylacrylamide)/polydopamine/clay nanocomposite hydrogels with stretchability, conductivity, and dual light- and thermo- responsive bending and adhesive properties. Colloids and Surfaces B: Biointerfaces, 2019, 177, 149-159.	5.0	45
9	A pH, glucose, and dopamine triple-responsive, self-healable adhesive hydrogel formed by phenylborate–catechol complexation. Polymer Chemistry, 2017, 8, 2997-3005.	3.9	109
10	Injectable dual redox responsive diselenideâ€containing poly(ethylene glycol) hydrogel. Journal of Biomedical Materials Research - Part A, 2017, 105, 2451-2460.	4.0	27
11	A dual pH- and reduction-responsive anticancer drug delivery system based on PEG–SS–poly(amino) Tj ETQq1	1.0.7843 3.0.7843	14 rgBT /O
12	A magnetic polypeptide nanocomposite with pH and near-infrared dual responsiveness for cancer therapy. Journal of Polymer Research, 2017, 24, 1.	2.4	4
13	Aromatic poly(ether ester)s derived from a naturally occurring building block nipagin and linear aliphatic α,I‰-diols. RSC Advances, 2017, 7, 32989-33000.	3.6	8
14	Injectable dopamineâ€modified poly(α,βâ€aspartic acid) nanocomposite hydrogel as bioadhesive drug delivery system. Journal of Biomedical Materials Research - Part A, 2017, 105, 1000-1008.	4.0	58
15	Dopamine-modified poly(amino acid): an efficient near-infrared photothermal therapeutic agent for cancer therapy. Journal of Materials Science, 2017, 52, 955-967.	3.7	29
16	Bioâ€based aromatic copoly(ether ester)s with enhanced toughness and degradability: Influence of insertion of phenoxyâ€ether linkage and eugenolâ€derived composition on properties. Journal of Polymer Science Part A, 2016, 54, 2171-2183.	2.3	6
17	A pH and redox dual stimuli-responsive poly(amino acid) derivative for controlled drug release. Colloids and Surfaces B: Biointerfaces, 2016, 146, 396-405.	5.0	40
18	pH-responsive zwitterionic polypeptide as a platform for anti-tumor drug delivery. Colloids and Surfaces B: Biointerfaces, 2016, 145, 401-409.	5.0	32

Guolin Wu

#	Article	IF	CITATIONS
19	Aromatic copolyesters with enhanced crystallizability and mechanical properties by adding the renewable nipagin-based composition. RSC Advances, 2016, 6, 21555-21563.	3.6	5
20	Crosslinkable polyesters based on monomers derived from renewable lignin. RSC Advances, 2016, 6, 11848-11854.	3.6	10
21	Toughened aromatic poly-(decylene terephthalate) copolyesters with two renewable eugenol-based components via a random copolymerization method. Polymer Chemistry, 2016, 7, 1096-1110.	3.9	18
22	PH responsive polypeptide based polymeric micelles for anticancer drug delivery. Journal of Biomedical Materials Research - Part A, 2015, 103, 3045-3053.	4.0	11
23	Synthesis and properties of temperature-sensitive and chemically crosslinkable poly(ether-urethane) hydrogel. Polymer Chemistry, 2015, 6, 3671-3684.	3.9	8
24	A pH- and thermo-responsive poly(amino acid)-based drug delivery system. Colloids and Surfaces B: Biointerfaces, 2015, 136, 562-569.	5.0	48
25	Polyesters derived from bio-based eugenol and 10-undecenoic acid: synthesis, characterization, and structure–property relationships. RSC Advances, 2015, 5, 85996-86005.	3.6	17
26	Synthesis and properties of polyesters derived from renewable eugenol and α,ω-diols via a continuous overheating method. Polymer Chemistry, 2015, 6, 7138-7148.	3.9	25
27	Preparation of a multifunctional verapamil-loaded nano-carrier based on a self-assembling PEGylated prodrug. Colloids and Surfaces B: Biointerfaces, 2015, 135, 682-688.	5.0	11
28	Novel vanillic acid-based poly(ether–ester)s: from synthesis to properties. Polymer Chemistry, 2015, 6, 797-804.	3.9	43
29	Magnetic nanoparticles with a pH-sheddable layer for antitumor drug delivery. Colloids and Surfaces B: Biointerfaces, 2014, 118, 218-225.	5.0	30
30	Synthesis and characterization of biocompatible zwitterionic sulfobetaine polypeptides and their resistance to protein adsorption. Journal of Polymer Research, 2014, 21, 1.	2.4	7
31	Imine bond cross-linked poly(ethylene glycol)-block-poly(aspartamide) complex micelle as a carrier to deliver anticancer drugs. RSC Advances, 2014, 4, 11244.	3.6	18
32	Magnetic and pH sensitive drug delivery system through NCA chemistry for tumor targeting. RSC Advances, 2014, 4, 15856-15862.	3.6	18
33	Reverse micelles based on β-cyclodextrin-incorporated amphiphilic polyurethane copolymers for protein delivery. Polymer Chemistry, 2014, 5, 5300-5309.	3.9	17
34	Synthesis and characterization of zwitterionic peptides derived from natural amino acids and their resistance to protein adsorption. RSC Advances, 2014, 4, 20665.	3.6	21
35	β-Cyclodextrin-conjugated amino poly(glycerol methacrylate)s for efficient insulin delivery. RSC Advances, 2014, 4, 6478.	3.6	24
36	A hydrazone crosslinked zwitterionic polypeptide nanogel as a platform for controlled drug delivery. RSC Advances, 2014, 4, 50301-50311.	3.6	36

Guolin Wu

#	Article	IF	CITATIONS
37	Synthesis of amphiphilic polyaspartamide derivatives and construction of reverse micelles. RSC Advances, 2014, 4, 37130-37137.	3.6	14
38	Controlled Release of Protein from Biodegradable Multi-sensitive Injectable Poly(ether-urethane) Hydrogel. ACS Applied Materials & Interfaces, 2014, 6, 3640-3647.	8.0	55
39	Renewable polyesters derived from 10-undecenoic acid and vanillic acid with versatile properties. Polymer Chemistry, 2014, 5, 2843-2853.	3.9	54
40	An injectable and biodegradable hydrogel based on poly(α,βâ€ e spartic acid) derivatives for localized drug delivery. Journal of Biomedical Materials Research - Part A, 2014, 102, 628-638.	4.0	43
41	Precise control of drug release from dually responsive poly(ether urethane) nanoparticles. RSC Advances, 2013, 3, 13859.	3.6	9
42	Synthesis, characterization and controlled drug release from temperature-responsive poly(ether-urethane) particles based on PEG-diisocyanates and aliphatic diols. Journal of Biomaterials Science, Polymer Edition, 2013, 24, 1676-1691.	3.5	10
43	Temperature-responsive drug delivery systems based on polyaspartamides with isopropylamine pendant groups. Soft Matter, 2013, 9, 7267.	2.7	48
44	Magnetic and pH-sensitive nanoparticles for antitumor drug delivery. Colloids and Surfaces B: Biointerfaces, 2013, 103, 15-22.	5.0	108
45	On–off switchable drug release from multi-responsive degradable poly(ether urethane) nanoparticles. Biomaterials Science, 2013, 1, 614.	5.4	17
46	Layer-by-layer assembled polyaspartamide nanocapsules for pH-responsive protein delivery. Colloids and Surfaces B: Biointerfaces, 2013, 108, 205-211.	5.0	35
47	Quaternized amino poly(glycerol-methacrylate)s for enhanced pDNA delivery. Polymer Chemistry, 2013, 4, 3514.	3.9	31
48	Temperature-triggered redox-degradable poly(ether urethane) nanoparticles for controlled drug delivery. Journal of Materials Chemistry, 2012, 22, 25217.	6.7	23
49	A novel delivery system of doxorubicin with high load and pH-responsive release from the nanoparticles of poly (α,β-aspartic acid) derivative. European Journal of Pharmaceutical Sciences, 2012, 47, 256-264.	4.0	59
50	Preparation and tunable temperature sensitivity of biodegradable polyurethane nanoassemblies from diisocyanate and poly(ethylene glycol). Soft Matter, 2011, 7, 3546.	2.7	62
51	Amino poly(glycerol methacrylate)s for oligonucleic acid delivery with enhanced transfection efficiency and low cytotoxicity. Soft Matter, 2011, 7, 9239.	2.7	40
52	pH-sensitive sandwich poly(amino acid) micelles. Journal of Controlled Release, 2011, 152, e100-e101.	9.9	0
53	Synthesis of a novel zwitterionic biodegradable poly (α,β-l-aspartic acid) derivative with some l-histidine side-residues and its resistance to non-specific protein adsorption. Colloids and Surfaces B: Biointerfaces, 2011, 86, 237-241.	5.0	30
54	Biodegradable and temperature-responsive polyurethanes for adriamycin delivery. International Journal of Pharmaceutics, 2011, 412, 52-58.	5.2	65

#	Article	IF	CITATIONS
55	pH-Responsive Self-Assembly and conformational transition of partially propyl-esterified poly(α,β-l-aspartic acid) as amphiphilic biodegradable polyanion. Colloids and Surfaces B: Biointerfaces, 2009, 68, 13-19.	5.0	21