
Roger Funk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1791818/publications.pdf Version: 2024-02-01

ROCED FUNK

#	Article	IF	CITATIONS
1	Measurement and data analysis methods for field-scale wind erosion studies and model validation. Earth Surface Processes and Landforms, 2003, 28, 1163-1188.	2.5	168
2	Effect of grazing on wind driven carbon and nitrogen ratios in the grasslands of Inner Mongolia. Catena, 2008, 75, 182-190.	5.0	113
3	Effect of moisture on fine dust emission from tillage operations on agricultural soils. Earth Surface Processes and Landforms, 2008, 33, 1851-1863.	2.5	78
4	Soil carbon, multiple benefits. Environmental Development, 2015, 13, 33-38.	4.1	75
5	Assessment of extreme wind erosion and its impacts in Inner Mongolia, China. Aeolian Research, 2011, 3, 343-351.	2.7	72
6	Field wind erosion measurements with Big Spring Number Eight (BSNE) and Modified Wilson and Cook (MWAC) samplers. Geomorphology, 2011, 129, 43-48.	2.6	55
7	Grazing changes topography-controlled topsoil properties and their interaction on different spatial scales in a semi-arid grassland of Inner Mongolia, P.R. China. Plant and Soil, 2011, 340, 35-58.	3.7	55
8	Benefits of soil carbon: report on the outcomes of an international scientific committee on problems of the environment rapid assessment workshop. Carbon Management, 2014, 5, 185-192.	2.4	46
9	Soil properties related to potential particulate matter emissions (PM10) of sandy soils. Aeolian Research, 2012, 3, 437-443.	2.7	44
10	Agroforestry: An Appropriate and Sustainable Response to a Changing Climate in Southern Africa?. Sustainability, 2020, 12, 6796.	3.2	39
11	Application of satellite remote sensing for mapping wind erosion risk and dust emissionâ€deposition in Inner Mongolia grassland, China. Grassland Science, 2012, 58, 8-19.	1.1	35
12	Basics of effective erosion control in German agriculture. Journal of Plant Nutrition and Soil Science, 2006, 169, 370-381.	1.9	29
13	Efficiency of Big Spring Number Eight (BSNE) and Modified Wilson and Cook (MWAC) samplers to collect PM10, PM2.5 and PM1. Aeolian Research, 2016, 21, 37-44.	2.7	29
14	Application of a modeling approach to designate soil and soil organic carbon loss to wind erosion on long-term monitoring sites (BDF) in Northern Germany. Aeolian Research, 2017, 25, 135-147.	2.7	28
15	Investigations with a field wind tunnel to estimate the wind erosion risk of row crops. Soil and Tillage Research, 2015, 145, 224-232.	5.6	26
16	Using 137Cs to estimate wind erosion and dust deposition on grassland in Inner Mongolia-selection of a reference site and description of the temporal variability. Plant and Soil, 2012, 351, 293-307.	3.7	24
17	Wind sorting affects differently the organo-mineral composition of saltating and particulate materials in contrasting texture agricultural soils. Aeolian Research, 2017, 28, 39-49.	2.7	23
18	Functional relationship of particulate matter (PM) emissions, animal species, and moisture content during manure application. Environment International, 2020, 143, 105577.	10.0	23

Roger Funk

#	Article	IF	CITATIONS
19	Wind Erosion. , 2006, , 563-582.		22
20	Diurnal changes of PM10-emission from arable soils in NE-Germany. Aeolian Research, 2015, 17, 117-127.	2.7	19
21	Wind modelling for wind erosion research by open source computational fluid dynamics. Ecological Informatics, 2011, 6, 316-324.	5.2	18
22	Airborne bacterial emission fluxes from manureâ€fertilized agricultural soil. Microbial Biotechnology, 2020, 13, 1631-1647.	4.2	17
23	How much soil organic carbon sequestration is due to conservation agriculture reducing soil erosion?. Soil Research, 2014, 52, 717.	1.1	16
24	Complex plant-derived organic aerosol as ice-nucleating particles – more than the sums of their parts?. Atmospheric Chemistry and Physics, 2020, 20, 11387-11397.	4.9	16
25	Wind tunnel tests to estimate PM10 and PM2.5-emissions from complex substrates of open-cast strip mines in Germany. Aeolian Research, 2019, 39, 23-32.	2.7	15
26	Particulate matter emissions during field application of poultry manure - The influence of moisture content and treatment. Science of the Total Environment, 2021, 780, 146652.	8.0	15
27	Identifying sensitive areas to wind erosion in the Xilingele grassland by computational fluid dynamics modelling. Ecological Informatics, 2012, 8, 37-47.	5.2	13
28	Testate amoebae colonizing a newly exposed land surface are of airborne origin. Ecological Indicators, 2015, 48, 55-62.	6.3	13
29	Effects of low-scale landscape structures on aeolian transport processes on arable land. Aeolian Research, 2018, 32, 181-191.	2.7	12
30	Effects of farmyard manure application on dust emissions from arable soils. Atmospheric Pollution Research, 2020, 11, 1610-1624.	3.8	9
31	Low airborne tenacity and spread of <scp>ESBL</scp> â€{ <scp>AmpC</scp> â€producing <scp><i>Escherichia coli</i></scp> from fertilized soil by wind erosion. Environmental Microbiology, 2021, 23, 7497-7511.	3.8	9
32	Differences in the sediment composition of wind eroded sandy soils before and after fertilization with poultry manure. Soil and Tillage Research, 2022, 215, 105205.	5.6	9
33	Blowin' in the Wind: Wind Dispersal Ability of Phytopathogenic Fusarium in a Wind Tunnel Experiment. Atmosphere, 2021, 12, 1653.	2.3	8
34	Vertical dust concentration measurements within the boundary layer to assess regional source–sink relations of dust in semi-arid grasslands of Inner Mongolia, China. Environmental Earth Sciences, 2015, 73, 163-174.	2.7	7
35	Viel wind um nichts? forschungen zur winderosion in Brandenburg: Much wind about nothing? wind erosion research in Brandenburg. Archives of Agronomy and Soil Science, 2004, 50, 309-317.	2.6	6
36	Assessment and Measurement of Wind Erosion. Springer Water, 2016, , 425-449.	0.3	5

Roger Funk

#	Article	IF	CITATIONS
37	Elemental composition of wind-blown sediments from contrasting textured soils. Aeolian Research, 2021, 48, 100656.	2.7	4
38	A new Lagrangian in-time particle simulation module (Itpas v1) for atmospheric particle dispersion. Geoscientific Model Development, 2021, 14, 2205-2220.	3.6	4
39	A computational fluid dynamics model for wind simulation: model implementation and experimental validation. Journal of Zhejiang University: Science A, 2012, 13, 274-283.	2.4	3
40	Horizontal and vertical fluxes of particulate matter during wind erosion on arable land in the province La Pampa, Argentina. International Journal of Sediment Research, 2022, 37, 539-552.	3.5	3
41	Methods for Quantifying Wind Erosion in Steppe Regions. Environmental Science and Engineering, 2014, , 315-327.	0.2	2
42	Transport preferences of P forms in wind-blown sediments of two susceptible soils. Aeolian Research, 2022, 55, 100776.	2.7	2
43	Der einfluss zunehmender bodenbedeckung auf die winderosion am beispiel von zuckerrüben und maisâ^—. Archives of Agronomy and Soil Science, 1998, 43, 183-200.	2.6	1