Korneel Rabaey

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1791402/korneel-rabaey-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

28,043 166 76 242 h-index g-index citations papers 31,335 7.41 253 9.4 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
242	A review on ion-exchange nanofiber membranes: properties, structure and application in electrochemical (waste)water treatment. <i>Separation and Purification Technology</i> , 2022 , 287, 120529	8.3	2
241	Methylotrophs: from C1 compounds to food Current Opinion in Biotechnology, 2022, 75, 102685	11.4	О
240	In silico assessment of household level closed water cycles: Towards extreme decentralization. <i>Environmental Science and Ecotechnology</i> , 2022 , 10, 100148	7.4	O
239	Electrochemical codeposition of arsenic from acidic copper sulfate baths: The implications for sustainable copper electrometallurgy. <i>Minerals Engineering</i> , 2022 , 176, 107312	4.9	1
238	Ammonia recovery from brines originating from a municipal wastewater ion exchange process and valorization of recovered nitrogen into microbial protein. <i>Chemical Engineering Journal</i> , 2022 , 427, 1308	9 € .7	5
237	Producing microbial-based protein from reactive nitrogen recovered from wastewater 2022 , 223-244		
236	Resource recovery from municipal wastewater: what and how much is there? 2022 , 1-19		
235	The third route: A techno-economic evaluation of extreme water and wastewater decentralization <i>Water Research</i> , 2022 , 218, 118408	12.5	O
234	High rate production of concentrated sulfides from metal bearing wastewater in an expanded bed hydrogenotrophic sulfate reducing bioreactor. <i>Environmental Science and Ecotechnology</i> , 2022 , 100173	7.4	O
233	Lignocellulose Fermentation Products Generated by Giant Panda Gut Microbiomes Depend Ultimately on pH Rather than Portion of Bamboo: A Preliminary Study. <i>Microorganisms</i> , 2022 , 10, 978	4.9	
232	Impact of Periodic Polarization on Groundwater Denitrification in Bioelectrochemical Systems. <i>Environmental Science & Environmental Science & Environ</i>	10.3	2
231	Production of microbial protein from fermented grass. <i>Chemical Engineering Journal</i> , 2021 , 433, 133631	14.7	1
230	Valorization of the organic fraction of municipal solid waste for fumaric acid production and electrochemical membrane extraction using Candida blankii. <i>Bioresource Technology Reports</i> , 2021 , 17, 100900	4.1	
229	A Scalable 128-Channel, Time-Multiplexed Potentiostat for Parallel Electrochemical Experiments. <i>IEEE Transactions on Circuits and Systems I: Regular Papers</i> , 2021 , 68, 1068-1079	3.9	4
228	Cow manure stabilizes anaerobic digestion of cocoa waste. Waste Management, 2021 , 126, 508-516	8.6	6
227	Directional Selection of Microbial Community Reduces Propionate Accumulation in Glycerol and Glucose Anaerobic Bioconversion Under Elevated pCO. <i>Frontiers in Microbiology</i> , 2021 , 12, 675763	5.7	1
226	Hydrogen peroxide in bioelectrochemical systems negatively affects microbial current generation. Journal of Applied Electrochemistry, 2021 , 51, 1463-1478	2.6	2

(2020-2021)

225	Electrochemical In Situ pH Control Enables Chemical-Free Full Urine Nitrification with Concomitant Nitrate Extraction. <i>Environmental Science & Endogy</i> , 2021 , 55, 8287-8298	10.3	2
224	Lignin Aromatics to PHA Polymers: Nitrogen and Oxygen Are the Key Factors for Pseudomonas. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 10579-10590	8.3	6
223	Assessing the potential for up-cycling recovered resources from anaerobic digestion through microbial protein production. <i>Microbial Biotechnology</i> , 2021 , 14, 897-910	6.3	8
222	Stainless steel substrate pretreatment effects on copper nucleation and stripping during copper electrowinning. <i>Journal of Applied Electrochemistry</i> , 2021 , 51, 219-233	2.6	3
221	Biochar and activated carbon enhance ethanol conversion and selectivity to caproic acid by Clostridium kluyveri. <i>Bioresource Technology</i> , 2021 , 319, 124236	11	11
220	Effect of speciation and composition on the kinetics and precipitation of arsenic sulfide from industrial metallurgical wastewater. <i>Journal of Hazardous Materials</i> , 2021 , 409, 124418	12.8	16
219	Production and extraction of medium chain carboxylic acids at a semi-pilot scale. <i>Chemical Engineering Journal</i> , 2021 , 416, 127886	14.7	17
218	A chip-based 128-channel potentiostat for high-throughput studies of bioelectrochemical systems: Optimal electrode potentials for anodic biofilms. <i>Biosensors and Bioelectronics</i> , 2021 , 174, 112813	11.8	12
217	Separation and recovery of ammonium from industrial wastewater containing methanol using copper hexacyanoferrate (CuHCF) electrodes. <i>Water Research</i> , 2021 , 188, 116532	12.5	3
216	Electrochemical and phylogenetic comparisons of oxygen-reducing electroautotrophic communities. <i>Biosensors and Bioelectronics</i> , 2021 , 171, 112700	11.8	2
215	From Biogas and Hydrogen to Microbial Protein Through Co-Cultivation of Methane and Hydrogen Oxidizing Bacteria. <i>Frontiers in Bioengineering and Biotechnology</i> , 2021 , 9, 733753	5.8	3
214	Copper and zinc extraction from automobile shredder residues via an integrated electrodeposition and crystallization process. <i>Resources, Conservation and Recycling</i> , 2021 , 172, 105672	11.9	2
213	Empowering electroactive microorganisms for soil remediation: Challenges in the bioelectrochemical removal of petroleum hydrocarbons. <i>Chemical Engineering Journal</i> , 2021 , 419, 13000	0 1 84.7	9
212	Boron extraction using selective ion exchange resins enables effective magnesium recovery from lithium rich brines with minimal lithium loss. <i>Separation and Purification Technology</i> , 2021 , 275, 119177	8.3	3
211	Continuous H/CO fermentation for acetic acid production under transient and continuous sulfide inhibition. <i>Chemosphere</i> , 2021 , 285, 131536	8.4	0
210	Estimation of pathogenic potential of an environmental Pseudomonas aeruginosa isolate using comparative genomics. <i>Scientific Reports</i> , 2021 , 11, 1370	4.9	2
209	Electrified bioreactors: the next power-up for biometallurgical wastewater treatment <i>Microbial Biotechnology</i> , 2021 ,	6.3	1
208	Integrating anaerobic digestion and slow pyrolysis improves the product portfolio of a cocoa waste biorefinery. <i>Sustainable Energy and Fuels</i> , 2020 , 4, 3712-3725	5.8	21

207	Ethanol:propionate ratio drives product selectivity in odd-chain elongation with Clostridium kluyveri and mixed communities. <i>Bioresource Technology</i> , 2020 , 313, 123651	11	9
206	Open microbiome dominated by Clostridium and Eubacterium converts methanol into i-butyrate and n-butyrate. <i>Applied Microbiology and Biotechnology</i> , 2020 , 104, 5119-5131	5.7	10
205	Homoacetogenesis and microbial community composition are shaped by pH and total sulfide concentration. <i>Microbial Biotechnology</i> , 2020 , 13, 1026-1038	6.3	7
204	An Affordable Multichannel Potentiostat with 128 Individual Stimulation and Sensing Channels 2020 ,		4
203	Electrochemically Induced Precipitation Enables Fresh Urine Stabilization and Facilitates Source Separation. <i>Environmental Science & Environmental Sc</i>	10.3	13
202	Enrichment and characterisation of ethanol chain elongating communities from natural and engineered environments. <i>Scientific Reports</i> , 2020 , 10, 3682	4.9	16
201	Covalent triazine framework/carbon nanotube hybrids enabling selective reduction of CO2 to CO at low overpotential. <i>Green Chemistry</i> , 2020 , 22, 3095-3103	10	8
200	Microbial electrochemistry for bioremediation. Environmental Science and Ecotechnology, 2020, 1, 1000	1 3 .4	45
199	Electrifying Enzymatic Bioproduction. <i>Joule</i> , 2020 , 4, 16-18	27.8	2
198	gen. nov., sp. nov., a Ubiquitous "Most-Wanted" Core Bacterial Taxon from Municipal Wastewater Treatment Plants. <i>Applied and Environmental Microbiology</i> , 2020 , 86,	4.8	11
197	Substrate-Dependent Fermentation of Bamboo in Giant Panda Gut Microbiomes: Leaf Primarily to Ethanol and Pith to Lactate. <i>Frontiers in Microbiology</i> , 2020 , 11, 530	5.7	3
196	Electrochemical tap water softening: A zero chemical input approach. Water Research, 2020, 169, 11526	5 3 12.5	16
195	Membrane electrolysis for separation of cobalt from terephthalic acid industrial wastewater. <i>Hydrometallurgy</i> , 2020 , 191, 105216	4	7
194	Electrochemical treatment of industrial sulfidic spent caustic streams for sulfide removal and caustic recovery. <i>Journal of Hazardous Materials</i> , 2020 , 388, 121770	12.8	8
193	Microbial protein production from methane via electrochemical biogas upgrading. <i>Chemical Engineering Journal</i> , 2020 , 391, 123625	14.7	18
192	The type of microorganism and substrate determines the odor fingerprint of dried bacteria targeting microbial protein production. <i>FEMS Microbiology Letters</i> , 2020 , 367,	2.9	6
191	The third route: Using extreme decentralization to create resilient urban water systems. <i>Water Research</i> , 2020 , 185, 116276	12.5	9
190	Membrane electrolysis for the removal of Na+ from brines for the subsequent recovery of lithium salts. <i>Separation and Purification Technology</i> , 2020 , 252, 117410	8.3	5

(2019-2020)

189	Lithium carbonate recovery from brines using membrane electrolysis. <i>Journal of Membrane Science</i> , 2020 , 615, 118416	9.6	7
188	Impact of substrate and growth conditions on microbial protein production and composition. <i>Bioresource Technology</i> , 2020 , 317, 124021	11	8
187	Mildly acidic pH selects for chain elongation to caproic acid over alternative pathways during lactic acid fermentation. <i>Water Research</i> , 2020 , 186, 116396	12.5	35
186	Bio-electrochemical COD removal for energy-efficient, maximum and robust nitrogen recovery from urine through membrane aerated nitrification. <i>Water Research</i> , 2020 , 185, 116223	12.5	25
185	Direct and Indirect Effects of Increased CO Partial Pressure on the Bioenergetics of Syntrophic Propionate and Butyrate Conversion. <i>Environmental Science & Environmental Sci</i>	10.3	13
184	The hydrogen gas bio-based economy and the production of renewable building block chemicals, food and energy. <i>New Biotechnology</i> , 2020 , 55, 12-18	6.4	32
183	Microbial electrosynthesis from CO: forever a promise?. Current Opinion in Biotechnology, 2020, 62, 48-5	571.4	126
182	Mainstream Ammonium Recovery to Advance Sustainable Urban Wastewater Management. <i>Environmental Science & Environmental Scienc</i>	10.3	50
181	Full-scale investigation of in-situ iron and alkalinity generation for efficient sulfide control. <i>Water Research</i> , 2019 , 167, 115032	12.5	8
180	Fruity flavors from waste: A novel process to upgrade crude glycerol to ethyl valerate. <i>Bioresource Technology</i> , 2019 , 289, 121574	11	13
179	Direct electrochemical extraction increases microbial succinic acid production from spent sulphite liquor. <i>Green Chemistry</i> , 2019 , 21, 2401-2411	10	11
178	A Current-Driven Six-Channel Potentiostat for Rapid Performance Characterization of Microbial Electrolysis Cells. <i>IEEE Transactions on Instrumentation and Measurement</i> , 2019 , 68, 4694-4702	5.2	7
177	Reversible Effects of Periodic Polarization on Anodic Electroactive Biofilms. <i>ChemElectroChem</i> , 2019 , 6, 1921-1925	4.3	10
176	Oxygen-reducing microbial cathodes monitoring toxic shocks in tap water. <i>Biosensors and Bioelectronics</i> , 2019 , 132, 115-121	11.8	31
175	Membrane electrolysis for the removal of Mg and Ca from lithium rich brines. <i>Water Research</i> , 2019 , 154, 117-124	12.5	34
174	Reactors for Microbial Electrobiotechnology. <i>Advances in Biochemical Engineering/Biotechnology</i> , 2019 , 167, 231-271	1.7	8
173	High-rate activated sludge systems combined with dissolved air flotation enable effective organics removal and recovery. <i>Bioresource Technology</i> , 2019 , 291, 121833	11	15
172	Granular fermentation enables high rate caproic acid production from solid-free thin stillage. <i>Green Chemistry</i> , 2019 , 21, 1330-1339	10	34

171	A 64-channel, 1.1-pA-accurate On-chip Potentiostat for Parallel Electrochemical Monitoring 2019,		4
170	Membrane stripping enables effective electrochemical ammonia recovery from urine while retaining microorganisms and micropollutants. <i>Water Research</i> , 2019 , 150, 349-357	12.5	31
169	Anode materials for sulfide oxidation in alkaline wastewater: An activity and stability performance comparison. <i>Water Research</i> , 2019 , 149, 111-119	12.5	12
168	An Acetobacterium strain isolated with metallic iron as electron donor enhances iron corrosion by a similar mechanism as Sporomusa sphaeroides. <i>FEMS Microbiology Ecology</i> , 2019 , 95,	4.3	22
167	Anaerobic ureolysis of source-separated urine for NH recovery enables direct removal of divalent ions at the toilet. <i>Water Research</i> , 2019 , 148, 97-105	12.5	14
166	Membrane electrolysis-assisted CO2 and H2S extraction as innovative pretreatment method for biological biogas upgrading. <i>Chemical Engineering Journal</i> , 2019 , 361, 1479-1486	14.7	13
165	The Urgent Need to Re-engineer Nitrogen-Efficient Food Production for the Planet 2018 , 35-69		12
164	Growth and current production of mixed culture anodic biofilms remain unaffected by sub-microscale surface roughness. <i>Bioelectrochemistry</i> , 2018 , 122, 213-220	5.6	10
163	Metal recovery by microbial electro-metallurgy. <i>Progress in Materials Science</i> , 2018 , 94, 435-461	42.2	86
162	Upgrading the value of anaerobic digestion via chemical production from grid injected biomethane. <i>Energy and Environmental Science</i> , 2018 , 11, 1788-1802	35.4	64
161	Effect of the anode potential on the physiology and proteome of Shewanella oneidensis MR-1. <i>Bioelectrochemistry</i> , 2018 , 119, 172-179	5.6	18
160	Carbon emission avoidance and capture by producing in-reactor microbial biomass based food, feed and slow release fertilizer: Potentials and limitations. <i>Science of the Total Environment</i> , 2018 , 644, 1525-1530	10.2	22
159	A Novel Shewanella Isolate Enhances Corrosion by Using Metallic Iron as the Electron Donor with Fumarate as the Electron Acceptor. <i>Applied and Environmental Microbiology</i> , 2018 , 84,	4.8	35
158	A novel high-throughput method for kinetic characterisation of anaerobic bioproduction strains, applied to Clostridium kluyveri. <i>Scientific Reports</i> , 2018 , 8, 9724	4.9	26
157	Porous nickel hollow fiber cathodes coated with CNTs for efficient microbial electrosynthesis of acetate from CO2 using Sporomusa ovata. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 17201-17211	13	57
156	Ionic liquid ion exchange: exclusion from strong interactions condemns cations to the most weakly interacting anions and dictates reaction equilibrium. <i>Green Chemistry</i> , 2018 , 20, 4277-4286	10	24
155	Periodic polarization of electroactive biofilms increases current density and charge carriers concentration while modifying biofilm structure. <i>Biosensors and Bioelectronics</i> , 2018 , 121, 183-191	11.8	29
154	Sanitation of blackwater via sequential wetland and electrochemical treatment. <i>Npj Clean Water</i> , 2018 , 1,	11.2	11

153	Anode potential selection for sulfide removal in contaminated marine sediments. <i>Journal of Hazardous Materials</i> , 2018 , 360, 498-503	12.8	5	
152	Cocoa residues as viable biomass for renewable energy production through anaerobic digestion. <i>Bioresource Technology</i> , 2018 , 265, 568-572	11	10	
151	Decoupling Livestock from Land Use through Industrial Feed Production Pathways. <i>Environmental Science & Environmental Science</i>	10.3	76	
150	Combined extrusion and alkali pretreatment improves grass storage towards fermentation and anaerobic digestion. <i>Biomass and Bioenergy</i> , 2018 , 119, 121-127	5.3	6	
149	Membrane Electrolysis Assisted Gas Fermentation for Enhanced Acetic Acid Production. <i>Frontiers in Energy Research</i> , 2018 , 6,	3.8	16	
148	Interfacing anaerobic digestion with (bio)electrochemical systems: Potentials and challenges. Water Research, 2018 , 146, 244-255	12.5	85	
147	Capture-Ferment-Upgrade: A Three-Step Approach for the Valorization of Sewage Organics as Commodities. <i>Environmental Science & Environmental Science </i>	10.3	62	
146	Rapid and Quantitative Assessment of Redox Conduction Across Electroactive Biofilms by using Double Potential Step Chronoamperometry. <i>ChemElectroChem</i> , 2017 , 4, 1026-1036	4.3	34	
145	Electrobioremediation of oil spills. Water Research, 2017, 114, 351-370	12.5	81	
144	Electrochemical oxidation of iron and alkalinity generation for efficient sulfide control in sewers. <i>Water Research</i> , 2017 , 118, 114-120	12.5	28	
143	Nitrogen cycling in Bioregenerative Life Support Systems: Challenges for waste refinery and food production processes. <i>Progress in Aerospace Sciences</i> , 2017 , 91, 87-98	8.8	41	
142	The type of ion selective membrane determines stability and production levels of microbial electrosynthesis. <i>Bioresource Technology</i> , 2017 , 224, 358-364	11	33	
141	Simultaneous use of caustic and oxygen for efficient sulfide control in sewers. <i>Science of the Total Environment</i> , 2017 , 601-602, 776-783	10.2	16	
140	Microbes and the Next Nitrogen Revolution. Environmental Science & amp; Technology, 2017, 51, 7297-7	′3 0 3.3	63	
139	Continuous long-term electricity-driven bioproduction of carboxylates and isopropanol from CO2 with a mixed microbial community. <i>Journal of CO2 Utilization</i> , 2017 , 20, 141-149	7.6	97	
138	A Gibbs Free Energy-Based Assessment of Microbial Electrocatalysis. <i>Trends in Biotechnology</i> , 2017 , 35, 393-406	15.1	25	
137	A novel tubular microbial electrolysis cell for high rate hydrogen production. <i>Journal of Power Sources</i> , 2017 , 356, 484-490	8.9	73	
136	Upgrading syngas fermentation effluent using in a continuous fermentation. <i>Biotechnology for Biofuels</i> , 2017 , 10, 83	7.8	70	

135	The Chemical Route to a Carbon Dioxide Neutral World. ChemSusChem, 2017, 10, 1039-1055	8.3	129
134	Concomitant Leaching and Electrochemical Extraction of Rare Earth Elements from Monazite. <i>Environmental Science & Environmental Science & Environment</i>	10.3	67
133	Bridging spatially segregated redox zones with a microbial electrochemical snorkel triggers biogeochemical cycles in oil-contaminated River Tyne (UK) sediments. <i>Water Research</i> , 2017 , 127, 11-21	12.5	25
132	Electrochemical Production of Magnetite Nanoparticles for Sulfide Control in Sewers. <i>Environmental Science & Environmental Sc</i>	10.3	7
131	Electricity-assisted production of caproic acid from grass. <i>Biotechnology for Biofuels</i> , 2017 , 10, 180	7.8	55
130	Electroactive Biofilms for Sensing: Reflections and Perspectives. ACS Sensors, 2017, 2, 1072-1085	9.2	54
129	Electrochemical Ammonia Recovery from Source-Separated Urine for Microbial Protein Production. <i>Environmental Science & Environmental </i>	10.3	55
128	Efficient molasses fermentation under high salinity by inocula of marine and terrestrial origin. <i>Biotechnology for Biofuels</i> , 2017 , 10, 23	7.8	14
127	Successive parabolic interpolation as extremum seeking control for microbial fuel & electrolysis cells 2017 ,		1
126	A Group IV Species Dominates and Suppresses a Mixed Culture Fermentation by Tolerance to Medium Chain Fatty Acids Products. <i>Frontiers in Bioengineering and Biotechnology</i> , 2017 , 5, 8	5.8	46
125	Materials and Their Surface Modification for Use as Anode in Microbial Bioelectrochemical Systems 2017 , 403-427		4
124	Biofilm Formation by Clostridium ljungdahlii Is Induced by Sodium Chloride Stress: Experimental Evaluation and Transcriptome Analysis. <i>PLoS ONE</i> , 2017 , 12, e0170406	3.7	42
123	Anodes Stimulate Anaerobic Toluene Degradation via Sulfur Cycling in Marine Sediments. <i>Applied and Environmental Microbiology</i> , 2016 , 82, 297-307	4.8	62
122	The electron donating capacity of biochar is dramatically underestimated. <i>Scientific Reports</i> , 2016 , 6, 32870	4.9	75
121	Extraction and Esterification of Low-Titer Short-Chain Volatile Fatty Acids from Anaerobic Fermentation with Ionic Liquids. <i>ChemSusChem</i> , 2016 , 9, 2059-63	8.3	30
120	Redox dependent metabolic shift in by extracellular electron supply. <i>Biotechnology for Biofuels</i> , 2016 , 9, 249	7.8	42
119	Anoxic metabolism and biochemical production in Pseudomonas putida F1 driven by a bioelectrochemical system. <i>Biotechnology for Biofuels</i> , 2016 , 9, 39	7.8	55
118	Electrochemical sulfide removal and caustic recovery from spent caustic streams. <i>Water Research</i> , 2016 , 92, 38-43	12.5	30

(2015-2016)

117	Enhanced Product Recovery from Glycerol Fermentation into 3-Carbon Compounds in a Bioelectrochemical System Combined with Extraction. <i>Frontiers in Bioengineering and Biotechnology</i> , 2016 , 4, 73	5.8	13
116	Genome-centric resolution of microbial diversity, metabolism and interactions in anaerobic digestion. <i>Environmental Microbiology</i> , 2016 , 18, 3144-58	5.2	85
115	Direct anodic hydrochloric acid and cathodic caustic production during water electrolysis. <i>Scientific Reports</i> , 2016 , 6, 20494	4.9	12
114	Anode potential influences the structure and function of anodic electrode and electrolyte-associated microbiomes. <i>Scientific Reports</i> , 2016 , 6, 39114	4.9	44
113	Pyrolytic carbon-coated stainless steel felt as a high-performance anode for bioelectrochemical systems. <i>Bioresource Technology</i> , 2016 , 211, 664-8	11	37
112	Electro-Fermentation - Merging Electrochemistry with Fermentation in Industrial Applications. <i>Trends in Biotechnology</i> , 2016 , 34, 866-878	15.1	165
111	High salinity in molasses wastewaters shifts anaerobic digestion to carboxylate production. <i>Water Research</i> , 2016 , 98, 293-301	12.5	45
110	Production of carboxylates from high rate activated sludge through fermentation. <i>Bioresource Technology</i> , 2016 , 217, 165-72	11	25
109	Acetate accumulation enhances mixed culture fermentation of biomass to lactic acid. <i>Applied Microbiology and Biotechnology</i> , 2016 , 100, 8337-48	5.7	16
108	A review of sustainable sanitation systems in Africa. <i>Reviews in Environmental Science and Biotechnology</i> , 2016 , 15, 465-478	13.9	33
107	Product Diversity Linked to Substrate Usage in Chain Elongation by Mixed-Culture Fermentation. <i>Environmental Science & Environmental </i>	10.3	66
106	Electrochemical nutrient recovery enables ammonia toxicity control and biogas desulfurization in anaerobic digestion. <i>Environmental Science & Environmental Science & Environ</i>	10.3	62
105	A logical data representation framework for electricity-driven bioproduction processes. <i>Biotechnology Advances</i> , 2015 , 33, 736-44	17.8	145
104	Hydrodynamic chronoamperometry for probing kinetics of anaerobic microbial metabolismcase study of Faecalibacterium prausnitzii. <i>Scientific Reports</i> , 2015 , 5, 11484	4.9	23
103	Selective Enrichment Establishes a Stable Performing Community for Microbial Electrosynthesis of Acetate from COII Environmental Science & Technology, 2015, 49, 8833-43	10.3	189
102	Heat-treated stainless steel felt as scalable anode material for bioelectrochemical systems. <i>Bioresource Technology</i> , 2015 , 195, 46-50	11	59
101	Temperature and solids retention time control microbial population dynamics and volatile fatty acid production in replicated anaerobic digesters. <i>Scientific Reports</i> , 2015 , 5, 8496	4.9	76
100	In-line and selective phase separation of medium-chain carboxylic acids using membrane electrolysis. <i>Chemical Communications</i> , 2015 , 51, 6847-50	5.8	98

99	Engineering electrodes for microbial electrocatalysis. Current Opinion in Biotechnology, 2015, 33, 149-5	611.4	191
98	Development of bioelectrocatalytic activity stimulates mixed-culture reduction of glycerol in a bioelectrochemical system. <i>Microbial Biotechnology</i> , 2015 , 8, 483-9	6.3	29
97	Integrated Production, Extraction, and Concentration of Acetic Acid from CO2 through Microbial Electrosynthesis. <i>Environmental Science and Technology Letters</i> , 2015 , 2, 325-328	11	131
96	Electrochemically driven extraction and recovery of ammonia from human urine. <i>Water Research</i> , 2015 , 87, 367-77	12.5	86
95	Scaling-Free Electrochemical Production of Caustic and Oxygen for Sulfide Control in Sewers. <i>Environmental Science & Environmental Science & Environm</i>	10.3	4
94	Use of SWATH mass spectrometry for quantitative proteomic investigation of Shewanella oneidensis MR-1 biofilms grown on graphite cloth electrodes. <i>Systematic and Applied Microbiology</i> , 2015 , 38, 135-9	4.2	30
93	Electrochemical Abatement of Hydrogen Sulfide from Waste Streams. <i>Critical Reviews in Environmental Science and Technology</i> , 2015 , 45, 1555-1578	11.1	52
92	Low temperature calcium hydroxide treatment enhances anaerobic methane production from (extruded) biomass. <i>Bioresource Technology</i> , 2015 , 176, 181-8	11	38
91	Global Phosphorus Scarcity and Full-Scale P-Recovery Techniques: A Review. <i>Critical Reviews in Environmental Science and Technology</i> , 2015 , 45, 336-384	11.1	386
90	Evaluating the potential impact of proton carriers on syntrophic propionate oxidation. <i>Scientific Reports</i> , 2015 , 5, 18364	4.9	16
89	Electrochemically and bioelectrochemically induced ammonium recovery. <i>Journal of Visualized Experiments</i> , 2015 , 52405	1.6	10
88	Digestion of high rate activated sludge coupled to biochar formation for soil improvement in the tropics. <i>Water Research</i> , 2015 , 81, 216-22	12.5	16
87	Electrolytic extraction drives volatile fatty acid chain elongation through lactic acid and replaces chemical pH control in thin stillage fermentation. <i>Biotechnology for Biofuels</i> , 2015 , 8, 221	7.8	77
86	Electrolytic membrane extraction enables production of fine chemicals from biorefinery sidestreams. <i>Environmental Science & Environmental Science & E</i>	10.3	86
85	Flame oxidation of stainless steel felt enhances anodic biofilm formation and current output in bioelectrochemical systems. <i>Environmental Science & Environmental Science & E</i>	10.3	105
84	Surfactant treatment of carbon felt enhances anodic microbial electrocatalysis in bioelectrochemical systems. <i>Electrochemistry Communications</i> , 2014 , 39, 1-4	5.1	39
83	Biomass retention on electrodes rather than electrical current enhances stability in anaerobic digestion. <i>Water Research</i> , 2014 , 54, 211-21	12.5	119
82	A critical revisit of the key parameters used to describe microbial electrochemical systems. <i>Electrochimica Acta</i> , 2014 , 140, 191-208	6.7	124

81	Chain elongation in anaerobic reactor microbiomes to recover resources from waste. <i>Current Opinion in Biotechnology</i> , 2014 , 27, 115-22	11.4	232
80	Microbial Fuel Cells as an Engineered Ecosystem 2014 , 307-320		6
79	Bioelectrochemical Systems 2014 , 167-184		
78	Deterministic processes guide long-term synchronised population dynamics in replicate anaerobic digesters. <i>ISME Journal</i> , 2014 , 8, 2015-28	11.9	224
77	Greenhouse gas emissions from rice microcosms amended with a plant microbial fuel cell. <i>Applied Microbiology and Biotechnology</i> , 2014 , 98, 3205-17	5.7	78
76	In-situ caustic generation from sewage: the impact of caustic strength and sewage composition. <i>Water Research</i> , 2013 , 47, 5828-35	12.5	13
75	Dynamics of cathode-associated microbial communities and metabolite profiles in a glycerol-fed bioelectrochemical system. <i>Applied and Environmental Microbiology</i> , 2013 , 79, 4008-14	4.8	53
74	Electrochemical oxidation of electrodialysed reverse osmosis concentrate on Ti/Pt-IrO2, Ti/SnO2-Sb and boron-doped diamond electrodes. <i>Water Research</i> , 2013 , 47, 242-50	12.5	106
73	Spatial uniformity of microbial diversity in a continuous bioelectrochemical system. <i>Bioresource Technology</i> , 2013 , 129, 599-605	11	33
72	Effects of surface charge and hydrophobicity on anodic biofilm formation, community composition, and current generation in bioelectrochemical systems. <i>Environmental Science & Environmental Science </i>	10.3	234
71	Carbon and electron fluxes during the electricity driven 1,3-propanediol biosynthesis from glycerol. <i>Environmental Science & Technology</i> , 2013 , 47, 11199-205	10.3	75
70	Dynamically adaptive control system for bioanodes in serially stacked bioelectrochemical systems. <i>Environmental Science & Environmental Science & Env</i>	10.3	31
69	Towards a carbon-negative sustainable bio-based economy. Frontiers in Plant Science, 2013, 4, 174	6.2	88
68	Dielectrophoresis-based discrimination of bacteria at the strain level based on their surface properties. <i>PLoS ONE</i> , 2013 , 8, e76751	3.7	37
67	Electrochemical resource recovery from digestate to prevent ammonia toxicity during anaerobic digestion. <i>Environmental Science & Environmental Scienc</i>	10.3	153
66	Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. <i>Science</i> , 2012 , 337, 686-90	33.3	1238
65	Long-term field test of an electrochemical method for sulfide removal from sewage. <i>Water Research</i> , 2012 , 46, 3085-93	12.5	16
64	Operational and technical considerations for microbial electrosynthesis. <i>Biochemical Society Transactions</i> , 2012 , 40, 1233-8	5.1	70

63	Non-invasive characterization of electrochemically active microbial biofilms using confocal Raman microscopy. <i>Energy and Environmental Science</i> , 2012 , 5, 7017	35.4	83
62	The diversity of techniques to study electrochemically active biofilms highlights the need for standardization. <i>ChemSusChem</i> , 2012 , 5, 1027-38	8.3	57
61	Efficient reduction of nitrobenzene to aniline with a biocatalyzed cathode. <i>Environmental Science & Environmental Science & Environmental Science</i>	10.3	220
60	Electrochemical oxidation of trace organic contaminants in reverse osmosis concentrate using RuO2/IrO2-coated titanium anodes. <i>Water Research</i> , 2011 , 45, 1579-86	12.5	109
59	Electrochemical sulfide removal from synthetic and real domestic wastewater at high current densities. <i>Water Research</i> , 2011 , 45, 2281-9	12.5	50
58	Redistribution of wastewater alkalinity with a microbial fuel cell to support nitrification of reject water. <i>Water Research</i> , 2011 , 45, 2691-9	12.5	24
57	Electrochemical degradation of the Eblocker metoprolol by Ti/Ru 0.7 Ir 0.3 O 2 and Ti/SnO 2-Sb electrodes. <i>Water Research</i> , 2011 , 45, 3205-14	12.5	61
56	Electrochemical oxidation of reverse osmosis concentrate on mixed metal oxide (MMO) titanium coated electrodes. <i>Water Research</i> , 2011 , 45, 4951-9	12.5	123
55	Electrochemical sulfide oxidation from domestic wastewater using mixed metal-coated titanium electrodes. <i>Water Research</i> , 2011 , 45, 5381-8	12.5	71
54	Electrochemical caustic generation from sewage. <i>Electrochemistry Communications</i> , 2011 , 13, 1202-120	045.1	17
5453	Electrochemical caustic generation from sewage. <i>Electrochemistry Communications</i> , 2011 , 13, 1202-120 Biofilm stratification during simultaneous nitrification and denitrification (SND) at a biocathode. <i>Bioresource Technology</i> , 2011 , 102, 334-41)45.1 11	17
	Biofilm stratification during simultaneous nitrification and denitrification (SND) at a biocathode.		108
53	Biofilm stratification during simultaneous nitrification and denitrification (SND) at a biocathode. Bioresource Technology, 2011 , 102, 334-41 Metabolic and practical considerations on microbial electrosynthesis. Current Opinion in	11	108
53 52	Biofilm stratification during simultaneous nitrification and denitrification (SND) at a biocathode. <i>Bioresource Technology</i> , 2011 , 102, 334-41 Metabolic and practical considerations on microbial electrosynthesis. <i>Current Opinion in Biotechnology</i> , 2011 , 22, 371-7 Dehalogenation of iodinated X-ray contrast media in a bioelectrochemical system. <i>Environmental</i>	11.4	108
535251	Biofilm stratification during simultaneous nitrification and denitrification (SND) at a biocathode. <i>Bioresource Technology</i> , 2011 , 102, 334-41 Metabolic and practical considerations on microbial electrosynthesis. <i>Current Opinion in Biotechnology</i> , 2011 , 22, 371-7 Dehalogenation of iodinated X-ray contrast media in a bioelectrochemical system. <i>Environmental Science & Dehalogy</i> , 2011 , 45, 782-8 Comments on Electricity generation by Enterobacter cloacae SU-1 in mediator less microbial fuel cellIby Samrot et al., Int. J. Hydrogen Energy, 35 (15) 2010, 7723\(\overline{0}\)729. <i>International Journal of</i>	11.4	108 166 39
53525150	Biofilm stratification during simultaneous nitrification and denitrification (SND) at a biocathode. <i>Bioresource Technology</i> , 2011 , 102, 334-41 Metabolic and practical considerations on microbial electrosynthesis. <i>Current Opinion in Biotechnology</i> , 2011 , 22, 371-7 Dehalogenation of iodinated X-ray contrast media in a bioelectrochemical system. <i>Environmental Science & Dehalogy</i> , 2011 , 45, 782-8 Comments on Electricity generation by Enterobacter cloacae SU-1 in mediator less microbial fuel celliby Samrot et al., Int. J. Hydrogen Energy, 35 (15) 2010, 7723\(\overline{A}\)729. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 9396-9397 Bacterial community structure corresponds to performance during cathodic nitrate reduction. <i>ISME</i>	11 11.4 10.3	108 166 39 3
 53 52 51 50 49 	Biofilm stratification during simultaneous nitrification and denitrification (SND) at a biocathode. <i>Bioresource Technology</i> , 2011 , 102, 334-41 Metabolic and practical considerations on microbial electrosynthesis. <i>Current Opinion in Biotechnology</i> , 2011 , 22, 371-7 Dehalogenation of iodinated X-ray contrast media in a bioelectrochemical system. <i>Environmental Science & Dehalogy</i> , 2011 , 45, 782-8 Comments on Electricity generation by Enterobacter cloacae SU-1 in mediator less microbial fuel celliby Samrot et al., Int. J. Hydrogen Energy, 35 (15) 2010, 7723\(\overline{A}\)729. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 9396-9397 Bacterial community structure corresponds to performance during cathodic nitrate reduction. <i>ISME Journal</i> , 2010 , 4, 1443-55	11 11.4 10.3 6.7 11.9	108 166 39 3

(2008-2010)

45	Electrochemical sulfide removal and recovery from paper mill anaerobic treatment effluent. <i>Water Research</i> , 2010 , 44, 2563-71	12.5	66
44	Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells. <i>Water Research</i> , 2010 , 44, 2970-80	12.5	298
43	Initial development and structure of biofilms on microbial fuel cell anodes. <i>BMC Microbiology</i> , 2010 , 10, 98	4.5	155
42	Microbial fuel cells operating on mixed fatty acids. <i>Bioresource Technology</i> , 2010 , 101, 1233-8	11	153
41	From wastewater treatment to biorefining. <i>Microbiology Australia</i> , 2009 , 30, 87	0.8	
40	Electrochemical regeneration of sulfur loaded electrodes. <i>Electrochemistry Communications</i> , 2009 , 11, 1437-1440	5.1	47
39	Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system. <i>Electrochemistry Communications</i> , 2009 , 11, 1752-1755	5.1	317
38	Role of sulfur during acetate oxidation in biological anodes. <i>Environmental Science & Environmental &</i>	10.3	61
37	Decolorization of azo dyes in bioelectrochemical systems. <i>Environmental Science & Environmental Scien</i>	10.3	268
36	Nitrobenzene removal in bioelectrochemical systems. <i>Environmental Science & Environmental Science & E</i>	10.3	174
35	Electron fluxes in a microbial fuel cell performing carbon and nitrogen removal. <i>Environmental Science & Environmental Scienc</i>	10.3	112
34	Bioelectrochemical Systems: From Extracellular Electron Transfer to Biotechnological Application. <i>Water Intelligence Online</i> , 2009 , 8,		41
33	Cathodic oxygen reduction catalyzed by bacteria in microbial fuel cells. ISME Journal, 2008, 2, 519-27	11.9	233
32	Phenazines and biosurfactants interact in the biological control of soil-borne diseases caused by Pythium spp. <i>Environmental Microbiology</i> , 2008 , 10, 778-88	5.2	91
31	Outlook for benefits of sediment microbial fuel cells with two bio-electrodes. <i>Microbial Biotechnology</i> , 2008 , 1, 446-62	6.3	93
30	High shear enrichment improves the performance of the anodophilic microbial consortium in a microbial fuel cell. <i>Microbial Biotechnology</i> , 2008 , 1, 487-96	6.3	114
29	Towards practical implementation of bioelectrochemical wastewater treatment. <i>Trends in Biotechnology</i> , 2008 , 26, 450-9	15.1	921
28	Microbial fuel cells generating electricity from rhizodeposits of rice plants. <i>Environmental Science</i> & amp; Technology, 2008, 42, 3053-8	10.3	233

27	Sequential anode-cathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells. <i>Water Research</i> , 2008 , 42, 1387-96	12.5	160
26	Microbial fuel cells for simultaneous carbon and nitrogen removal. Water Research, 2008, 42, 3013-24	12.5	361
25	Spontaneous electrochemical removal of aqueous sulfide. Water Research, 2008, 42, 4965-75	12.5	103
24	Combining biocatalyzed electrolysis with anaerobic digestion. <i>Water Science and Technology</i> , 2008 , 57, 575-9	2.2	112
23	Syntrophic processes drive the conversion of glucose in microbial fuel cell anodes. <i>Environmental Science & Environmental Sci</i>	10.3	168
22	Microbial fuel cell cathodes: from bottleneck to prime opportunity?. <i>Water Science and Technology</i> , 2008 , 57, 655-9	2.2	62
21	Metabolites produced by Pseudomonas sp. enable a Gram-positive bacterium to achieve extracellular electron transfer. <i>Applied Microbiology and Biotechnology</i> , 2008 , 77, 1119-29	5.7	224
20	The anode potential regulates bacterial activity in microbial fuel cells. <i>Applied Microbiology and Biotechnology</i> , 2008 , 78, 409-18	5.7	314
19	Minimizing losses in bio-electrochemical systems: the road to applications. <i>Applied Microbiology and Biotechnology</i> , 2008 , 79, 901-13	5.7	335
18	Use of Pseudomonas species producing phenazine-based metabolites in the anodes of microbial fuel cells to improve electricity generation. <i>Applied Microbiology and Biotechnology</i> , 2008 , 80, 985-93	5.7	104
17	Minireview: The Potential of Enhanced Manganese Redox Cycling for Sediment Oxidation. <i>Geomicrobiology Journal</i> , 2007 , 24, 547-558	2.5	33
16	Open air biocathode enables effective electricity generation with microbial fuel cells. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	334
15	Biological denitrification in microbial fuel cells. Environmental Science & En	4-60 .3	648
14	Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells. <i>Electrochimica Acta</i> , 2007 , 53, 598-603	6.7	224
13	Microbial ecology meets electrochemistry: electricity-driven and driving communities. <i>ISME Journal</i> , 2007 , 1, 9-18	11.9	385
12	Electron and carbon balances in microbial fuel cells reveal temporary bacterial storage behavior during electricity generation. <i>Environmental Science & Enpharmology</i> , 2007 , 41, 2915-21	10.3	205
11	Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. <i>Environmental Science & Environmental Science & Discourse (March 2008)</i> , 2006, 40, 3388-94	10.3	659
10	Microbial fuel cells for sulfide removal. Environmental Science & Environmenta	10.3	321

LIST OF PUBLICATIONS

9	Microbial fuel cells: methodology and technology. <i>Environmental Science & Emp; Technology</i> , 2006 , 40, 5181-92	10.3	4214
8	Microbial Fuel Cells in Relation to Conventional Anaerobic Digestion Technology. <i>Engineering in Life Sciences</i> , 2006 , 6, 285-292	3.4	276
7	Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. <i>Communications in Agricultural and Applied Biological Sciences</i> , 2006 , 71, 63-6		6
6	Tubular microbial fuel cells for efficient electricity generation. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	535
5	Microbial phenazine production enhances electron transfer in biofuel cells. <i>Environmental Science & Environmental & Environme</i>	10.3	726
4	Microbial fuel cells: novel biotechnology for energy generation. <i>Trends in Biotechnology</i> , 2005 , 23, 291-	815.1	1585
3	Biofuel cells select for microbial consortia that self-mediate electron transfer. <i>Applied and Environmental Microbiology</i> , 2004 , 70, 5373-82	4.8	953
2	A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. <i>Biotechnology Letters</i> , 2003 , 25, 1531-5	3	536
1	Impact of iron salts on activated sludge and interaction with nitrite or nitrate. <i>Bioresource Technology</i> , 2003 , 88, 229-39	11	44