List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1791380/publications.pdf Version: 2024-02-01

	147566	168136
3,478	31	53
citations	h-index	g-index
122	122	1653
docs citations	times ranked	citing authors
	3,478 citations 122 docs citations	3,478 31 citations h-index

#	Article	IF	CITATIONS
1	Al- and Cr-rich chromitites from the Mayari-Baracoa ophiolitic belt (eastern Cuba); consequence of interaction between volatile-rich melts and peridotites in suprasubduction mantle. Economic Geology, 1999, 94, 547-566.	1.8	193
2	Chromitites in ophiolites: How, where, when, why? Part II. The crystallization of chromitites. Lithos, 2014, 189, 140-158.	0.6	170
3	High-Cr and high-Al chromitites from the Sagua de Tánamo district, MayarÃ-Cristal ophiolitic massif (eastern Cuba): Constraints on their origin from mineralogy and geochemistry of chromian spinel and platinum-group elements. Lithos, 2011, 125, 101-121.	0.6	160
4	Distribution of platinum-group elements and Os isotopes in chromite ores from MayarÃ-Baracoa Ophiolitic Belt (eastern Cuba). Contributions To Mineralogy and Petrology, 2005, 150, 589-607.	1.2	121
5	Petrogenesis of highly depleted peridotites and gabbroic rocks from the MayarÃ-Baracoa Ophiolitic Belt (eastern Cuba). Contributions To Mineralogy and Petrology, 2006, 151, 717-736.	1.2	103
6	CHROMIAN SPINEL COMPOSITION AND THE PLATINUM-GROUP MINERALS OF THE PGE-RICH LOMA PEGUERA CHROMITITES, LOMA CARIBE PERIDOTITE, DOMINICAN REPUBLIC. Canadian Mineralogist, 2007, 45, 631-648.	0.3	101
7	Paleozoic serpentinite-enclosed chromitites from Tehuitzingo (Acatlán Complex, southern Mexico): a petrological and mineralogical study. Journal of South American Earth Sciences, 2004, 16, 649-666.	0.6	99
8	Chromitites in ophiolites: How, where, when, why? Part I. A review and new ideas on the origin and significance of platinum-group minerals. Lithos, 2014, 189, 127-139.	0.6	98
9	Fingerprints of metamorphism in chromite: New insights from minor and trace elements. Chemical Geology, 2014, 389, 137-152.	1.4	90
10	Critical metals (REE, Sc, PGE) in Ni laterites from Cuba and the Dominican Republic. Ore Geology Reviews, 2016, 73, 127-147.	1.1	82
11	Garnierites and garnierites: Textures, mineralogy and geochemistry of garnierites in the Falcondo Ni-laterite deposit, Dominican Republic. Ore Geology Reviews, 2014, 58, 91-109.	1.1	78
12	Composition and textures of chromite and platinum-group minerals in chromitites of the western ophiolitic belt from Pampean Ranges of CÃ ³ rdoba, Argentina. Ore Geology Reviews, 2008, 33, 32-48.	1.1	75
13	Platinum group minerals in ophiolitic chromitites from Tehuitzingo (Acatlán complex, southern) Tj ETQq1 1 0.78	4314 rgBT 0.4	Overlock 73
14	Mn–Ba–Hg mineralization at shallow submarine hydrothermal vents in BahÃa Concepción, Baja California Sur, Mexico. Chemical Geology, 2005, 224, 96-112.	1.4	73
15	Geochemistry of Cretaceous Magmatism in Eastern Cuba: Recycling of North American Continental Sediments and Implications for Subduction Polarity in the Greater Antilles Paleo-arc. Journal of Petrology, 2007, 48, 1813-1840.	1.1	73
16	Recycling and transport of continental material through the mantle wedge above subduction zones: A Caribbean example. Earth and Planetary Science Letters, 2016, 436, 93-107.	1.8	68
17	Zoning of laurite (RuS2)erlichmanite (OsS2): implications for the origin of PGM in ophiolite chromitites. European Journal of Mineralogy, 2009, 21, 419-432.	0.4	57

Platinum group minerals (PGM) in the Falcondo Ni-laterite deposit, Loma Caribe peridotite (Dominican) Tj ETQq0 0 0 rgBT /Overlock 10

#	Article	IF	CITATIONS
19	In situ Re–Os isotopic analysis of platinum-group minerals from the MayarÃ-Cristal ophiolitic massif (MayarÃ-Baracoa Ophiolitic Belt, eastern Cuba): implications for the origin of Os-isotope heterogeneities in podiform chromitites. Contributions To Mineralogy and Petrology, 2011, 161, 977-990.	1.2	51
20	Sorption of Ni by "lithiophorite–asbolane―intermediates in Moa Bay lateritic deposits, eastern Cuba. Chemical Geology, 2010, 275, 9-18.	1.4	47
21	Ni-sepiolite-falcondoite in garnierite mineralization from the Falcondo Ni-laterite deposit, Dominican Republic. Clay Minerals, 2009, 44, 435-454.	0.2	42
22	Distribution and mineralogy of platinum-group elements in altered chromitites of the Campo Formoso layered intrusion (Bahia State, Brazil): control by magmatic and hydrothermal processes. Mineralogy and Petrology, 2007, 89, 159-188.	0.4	41
23	Geochemical record of subduction initiation in the sub-arc mantle: Insights from the Loma Caribe peridotite (Dominican Republic). Lithos, 2016, 252-253, 1-15.	0.6	41
24	A shallow origin for diamonds in ophiolitic chromitites. Geology, 2019, 47, 75-78.	2.0	41
25	Os-isotope variability within sulfides from podiform chromitites. Chemical Geology, 2012, 291, 224-235.	1.4	39
26	The geology of Cuba: A brief overview and synthesis. GSA Today, 2016, , 4-10.	1.1	36
27	Geochemistry and Mineralogy of Rare Earth Elements (REE) in Bauxitic Ores of the Catalan Coastal Range, NE Spain. Minerals (Basel, Switzerland), 2018, 8, 562.	0.8	35
28	Metamorphism disturbs the Re-Os signatures of platinum-group minerals in ophiolite chromitites. Geology, 2012, 40, 659-662.	2.0	34
29	Mineralogy, geochemistry and sulfur isotope characterization of Cerro de MaimÃ ³ n (Dominican) Tj ETQq1 1 0.78 subduction initiation of the proto-Caribbean lithosphere within a fore-arc. Ore Geology Reviews, 2016, 72, 794-817.	4314 rgB7 1.1	7 /Overlock 34
30	Geological, geochemical and mineralogical characteristics of REE-bearing Las Mercedes bauxite deposit, Dominican Republic. Ore Geology Reviews, 2017, 89, 114-131.	1.1	33
31	Os isotope heterogeneity of the upper mantle: Evidence from the MayarÖBaracoa ophiolite belt in eastern Cuba. Earth and Planetary Science Letters, 2006, 241, 466-476.	1.8	32
32	MINERALOGY AND GEOCHEMISTRY OF PLATINUM-RICH CHROMITITES FROM THE MANTLE-CRUST TRANSITION ZONE AT OUEN ISLAND, NEW CALEDONIA OPHIOLITE. Canadian Mineralogist, 2011, 49, 1549-1569.	0.3	32
33	Ni Enrichment and Stability of Al-Free Garnierite Solid-Solutions: A Thermodynamic Approach. Clays and Clay Minerals, 2012, 60, 121-135.	0.6	30
34	Recycling in the subduction factory: Archaean to Permian zircons in the oceanic Cretaceous Caribbean island-arc (Hispaniola). Gondwana Research, 2018, 54, 23-37.	3.0	30
35	Distribution of platinum-group minerals in ophiolitic chromitites. Transactions of the Institution of Mining and Metallurgy Section B-Applied Earth Science, 2009, 118, 101-110.	0.8	29
	An Alternative Concerts on the Origin of Libro Lick Descence (LILD) and Concer Deduced (C.D.) Missingly		

An Alternative Scenario on the Origin of Ultra-High Pressure (UHP) and Super-Reduced (SuR) Minerals in Ophiolitic Chromitites: A Case Study from the Mercedita Deposit (Eastern Cuba). Minerals (Basel,) Tj ETQq0 0 0 rg BT /Overback 10 Tf 36

#	Article	IF	CITATIONS
37	Thermal metamorphism of mantle chromites and the stability of noble-metal nanoparticles. Contributions To Mineralogy and Petrology, 2015, 170, 1.	1.2	28
38	The recycling of chromitites in ophiolites from southwestern North America. Lithos, 2017, 294-295, 53-72.	0.6	28
39	Garutiite, (Ni,Fe,Ir), a new hexagonal polymorph of native Ni from Loma Peguera, Dominican Republic. European Journal of Mineralogy, 2010, 22, 293-304.	0.4	27
40	Alteration of Platinum-Group and Base-Metal Mineral Assemblages in Ophiolite Chromitites from the Dobromirtsi Massif, Rhodope Mountains (Bulgaria). Resource Geology, 2010, 60, 315-334.	0.3	27
41	Weathering profile of the Cerro de Maimón VMS deposit (Dominican Republic): textures, mineralogy, gossan evolution and mobility of gold and silver. Ore Geology Reviews, 2015, 65, 165-179.	1.1	27
42	Fe–Ni-bearing serpentines from the saprolite horizon of Caribbean Ni-laterite deposits: new insights from thermodynamic calculations. Mineralium Deposita, 2017, 52, 979-992.	1.7	27
43	CHROMITITE AND PLATINUM-GROUP-ELEMENT MINERALIZATION AT MIDDLE ARM BROOK, CENTRAL ADVOCATE OPHIOLITE COMPLEX, BAIE VERTE PENINSULA, NEWFOUNDLAND, CANADA. Canadian Mineralogist, 2011, 49, 1523-1547.	0.3	26
44	Compositional effects on the solubility of minor and trace elements in oxide spinel minerals: Insights from crystal-crystal partition coefficients in chromite exsolution. American Mineralogist, 2016, 101, 1360-1372.	0.9	26
45	Supergene neoformation of Pt-Ir-Fe-Ni alloys: multistage grains explain nugget formation in Ni-laterites. Mineralium Deposita, 2017, 52, 1069-1083.	1.7	26
46	Magmatic platinum nanoparticles in metasomatic silicate glasses and sulfides from Patagonian mantle xenoliths. Contributions To Mineralogy and Petrology, 2019, 174, 1.	1.2	25
47	Genesis of sulfide-rich chromite ores by the interaction between chromitite and pegmatitic olivine–norite dikes in the PotosÃ-Mine (Moa-Baracoa ophiolitic massif, eastern Cuba). Mineralium Deposita, 2001, 36, 658-669.	1.7	24
48	Petrogenesis and ⁴⁰ Ar/ ³⁹ Ar dating of proto-forearc crust in the Early Cretaceous Caribbean arc: The La Tinta mélange (eastern Cuba) and its easterly correlation in Hispaniola. International Geology Review, 2016, 58, 1020-1040.	1.1	24
49	Petrogenesis of meta-volcanic rocks from the Maimón Formation (Dominican Republic): Geochemical record of the nascent Greater Antilles paleo-arc. Lithos, 2017, 278-281, 255-273.	0.6	24
50	The Loma Peguera ophiolitic chromitite (Central Dominican Republic): a source of new platinum group minerals (PGM) species. Neues Jahrbuch Fur Mineralogie, Abhandlungen, 2009, 185, 335-349.	0.1	23
51	First description of a metamorphic sole related to ophiolite obduction in the northern Caribbean: Geochemistry and petrology of the GĂ¼ira de Jauco Amphibolite complex (eastern Cuba) and tectonic implications. Lithos, 2013, 179, 193-210.	0.6	23
52	Ni-phyllosilicates (garnierites) from the Falcondo Ni-laterite deposit (Dominican Republic): Mineralogy, nanotextures, and formation mechanisms by HRTEM and AEM. American Mineralogist, 2016, 101, 1460-1473.	0.9	23
53	The accumulation of Ni in serpentines and garnierites from the Falcondo Ni-laterite deposit (Dominican Republic) elucidated by means of μXAS. Geochimica Et Cosmochimica Acta, 2017, 198, 48-69.	1.6	23
54	Cold plumes trigger contamination of oceanic mantle wedges with continental crust-derived sediments: Evidence from chromitite zircon grains of eastern Cuban ophiolites. Geoscience Frontiers, 2018, 9, 1921-1936.	4.3	23

#	Article	IF	CITATIONS
55	Trace element geochemistry of sphalerite and chalcopyrite in arc-hosted VMS deposits. Journal of Geochemical Exploration, 2022, 232, 106882.	1.5	23
56	Platinum-Group Minerals in Chromitites of the Niquelândia Layered Intrusion (Central Goias, Brazil): Their Magmatic Origin and Low-Temperature Reworking during Serpentinization and Lateritic Weathering. Minerals (Basel, Switzerland), 2012, 2, 365-384.	0.8	21
57	Discovery of Ni-smectite-rich saprolite at Loma Ortega, Falcondo mining district (Dominican Republic): geochemistry and mineralogy of an unusual case of "hybrid hydrous Mg silicate – clay silicate―type Ni-laterite. Mineralium Deposita, 2017, 52, 1011-1030.	1.7	21
58	100 myr cycles of oceanic lithosphere generation in peri-Gondwana: Neoproterozoic–Devonian ophiolites from the NW African–Iberian margin of Gondwana and the Variscan Orogen. Geological Society Special Publication, 2021, 503, 169-184.	0.8	20
59	Barium-rich fluids and melts in a subduction environment (La Corea and Sierra del Convento) Tj ETQq1 1 0.7843	14 rgBT /O	verlock 10 Tf
60	Did the Turonian–Coniacian plume pulse trigger subduction initiation in the Northern Caribbean? Constraints from ⁴⁰ Ar/ ³⁹ Ar dating of the Moa-Baracoa metamorphic sole (eastern Cuba). International Geology Review, 2015, 57, 919-942.	1.1	19
61	High-pressure greenschist to blueschist facies transition in the MaimÃ ³ n Formation (Dominican) Tj ETQq1 1 0.78 266-267, 309-331.	4314 rgBT 0.6	Överlock 1 19
62	Gold Behavior in Supergene Profiles Under Changing Redox Conditions: The Example of the Las Cruces Deposit, Iberian Pyrite Belt. Economic Geology, 2015, 110, 2109-2126.	1.8	18
63	Ordovician magmatism in the Eastern Pyrenees: Implications for the geodynamic evolution of northern Gondwana. Lithos, 2018, 314-315, 479-496.	0.6	18
64	The Plutón DiorÃŧico Moat: Mildly alkaline monzonitic magmatism in the Fuegian Andes of Argentina. Journal of South American Earth Sciences, 2009, 28, 345-359.	0.6	16
65	Platinum-group element and gold enrichment in soils monitored by chromium stable isotopes during weathering of ultramafic rocks. Chemical Geology, 2018, 499, 84-99.	1.4	16
66	Petrology and geochemistry of Tehuitzingo serpentinites (Acatlán Complex, SW Mexico). Boletin De La Sociedad Geologica Mexicana, 2009, 61, 419-435.	0.1	16
67	A reappraisal of the metamorphic history of the Tehuitzingo chromitite, Puebla state, Mexico. International Geology Review, 2019, 61, 1706-1727.	1.1	15
68	Mineralogy of the HSE in the subcontinental lithospheric mantle —An interpretive review. Lithos, 2020, 372-373, 105681.	0.6	15
69	Nanoscale partitioning of Ru, Ir, and Pt in base-metal sulfides from the Caridad chromite deposit, Cuba. American Mineralogist, 2018, 103, 1208-1220.	0.9	14
70	Age and setting of Permian Slide Mountain terrane ophiolitic ultramafic-mafic complexes in the Yukon: Implications for late Paleozoic-early Mesozoic tectonic models in the northern Canadian Cordillera. Tectonophysics, 2018, 744, 458-483.	0.9	14
71	Mining and geological knowledge during the Neolithic: a geological study on the variscite mines at GavÃ, Catalonia. Episodes, 2003, 26, 295-301.	0.8	14
72	The occurrence of platinum-group element and gold minerals in the Bon Accord Ni-oxide body, South Africa. American Mineralogist, 2014, 99, 1774-1782.	0.9	13

#	Article	IF	CITATIONS
73	Towards a unified genetic model for the Au-Ag-Cu Pueblo Viejo district, central Dominican Republic. Ore Geology Reviews, 2017, 89, 463-494.	1.1	13
74	ZACCARINIITE, RhNiAs, A NEW PLATINUM-GROUP MINERAL FROM LOMA PEGUERA, DOMINICAN REPUBLIC. Canadian Mineralogist, 2012, 50, 1321-1329.	0.3	12
75	Re-Os and U-Pb Geochronology of the Doña Amanda and Cerro Kiosko Deposits, Bayaguana District, Dominican Republic: Looking Down for the Porphyry Cu-Mo Roots of the Pueblo Viejo-Type Mineralization in the Island-Arc Tholeiitic Series of the Caribbean. Economic Geology, 2017, 112, 829-853.	1.8	12
76	Precious metals in magmatic Fe-Ni-Cu sulfides from the PotosÃ-chromitite deposit, eastern Cuba. Ore Geology Reviews, 2020, 118, 103339.	1.1	12
77	RUTHENIUM AND MAGNETITE INTERGROWTHS FROM THE LOMA PEGUERA CHROMITITE, DOMINICAN REPUBLIC, AND RELEVANCE TO THE DEBATE OVER THE EXISTENCE OF PLATINUM-GROUP ELEMENT OXIDES AND HYDROXIDES. Canadian Mineralogist, 2014, 52, 617-624.	0.3	11
78	Trace-element geochemistry of transform-fault serpentinite in high-pressure subduction mélanges (eastern Cuba): implications for subduction initiation. International Geology Review, 2017, 59, 2041-2064.	1.1	11
79	Ophiolite hosted chromitite formed by supra-subduction zone peridotite –plume interaction. Geoscience Frontiers, 2020, 11, 2083-2102.	4.3	11
80	Reactive transport model of the formation of oxide-type Ni-laterite profiles (Punta Gorda, Moa Bay,) Tj ETQq0 0	0 rgBT /0\ 1.7	verlock 10 Tf 5
81	Ni-bearing phyllosilicates ("garnieritesâ€): New insights from thermal analysis, μARaman and IR spectroscopy. Applied Clay Science, 2019, 175, 47-66.	2.6	10
82	Las cromititas del Complejo OfiolÃtico de Camagüey, Cuba: un ejemplo de cromitas ricas en Al. Boletin De La Sociedad Geologica Mexicana, 2010, 62, 173-185.	0.1	10
83	D, O and C isotopes in podiform chromitites as fluid tracers for hydrothermal alteration processes of the MayarÃ-— Baracoa Ophiolitic Belt, eastern Cuba. Journal of Geochemical Exploration, 2003, 78-79, 117-122.	1.5	9
84	Geology, fluid inclusion and sulphur isotope characteristics of the El Cobre VHMS deposit, Southern Cuba. Mineralium Deposita, 2008, 43, 805-824.	1.7	9
85	Nanoscale Structure of Zoned Laurites from the Ojén Ultramafic Massif, Southern Spain. Minerals (Basel, Switzerland), 2019, 9, 288.	0.8	9
86	Re-Os DATING OF MOLYBDENITE FROM THE PUEBLO VIEJO Au-Ag-Cu AND DOUVRAY Cu-Au DISTRICTS, HISPANIOLA. Economic Geology, 2015, 110, 1101-1110.	1.8	8
87	The supergene origin of ruthenian hexaferrum in Niâ€laterites. Terra Nova, 2017, 29, 106-116.	0.9	8
88	Au crystal growth on natural occurring Au—Ag aggregate elucidated by means of precession electron diffraction (PED). Journal of Crystal Growth, 2018, 483, 228-235.	0.7	8
89	The chromitites of the Neoproterozoic Bou Azzer ophiolite (central Anti-Atlas, Morocco) revisited. Ore Geology Reviews, 2021, 134, 104166.	1.1	8
90	Nanoscale constraints on the in situ transformation of Ru–Os–Ir sulfides to alloys at low temperature. Ore Geology Reviews, 2020, 124, 103640.	1,1	7

#	Article	IF	CITATIONS
91	Low-temperature hydrothermal Pt mineralization in uvarovite-bearing ophiolitic chromitites from the Dominican Republic. Mineralium Deposita, 0, , 1.	1.7	7
92	A First Report of Variscite Tairona Artifacts (A.D. 1100-1600) from the Sierra Nevada de Santa Marta, Colombia, and Its Implications for Precolumbian exchange Networks in the Region. Latin American Antiquity, 2016, 27, 549-560.	0.3	6
93	A shallow origin for diamonds in ophiolitic chromitites: REPLY. Geology, 2019, 47, e477-e478.	2.0	6
94	Platinum group minerals in chromitite bodies of the Santa Elena Nappe, Costa Rica: mineralogical characterization by electron microprobe and Raman-spectroscopy. Boletin De La Sociedad Geologica Mexicana, 2010, 62, 161-171.	0.1	6
95	Source of ore-forming fluids in El Cobre VHMSdeposit (Cuba): evidence from fluid inclusions and sulfur isotopes. Journal of Geochemical Exploration, 2003, 78-79, 85-90.	1.5	5
96	Deposits associated with ultramafic–mafic complexes in Mexico: the Loma Baya case. Ore Geology Reviews, 2017, 81, 1053-1065.	1.1	5
97	Metamorphic evolution of the Loma Marcelo skarn within the geotectonic context of the crystalline basement of the Ventania System (Argentina). Journal of South American Earth Sciences, 2019, 92, 56-76.	0.6	5
98	Fe-Ti-Zr metasomatism in the oceanic mantle due to extreme differentiation of tholeiitic melts (Moa-Baracoa ophiolite, Cuba). Lithos, 2020, 358-359, 105420.	0.6	5
99	Critical Elements in Supergene Phosphates: The Example of the Weathering Profile at the GavÃ Neolithic Mines, Catalonia, Spain. Minerals (Basel, Switzerland), 2020, 10, 3.	0.8	4
100	The Neolithic variscite mines of GavÃ, Catalonia: Criteria for mineral exploration and exploitation in the Prehistory. Boletin De La Sociedad Geologica Mexicana, 2019, 71, 295-319.	0.1	4
101	Provenance study of the variscite artifacts of the Sierra Nevada de Santa Marta, Colombia and approach to routes of pre-Hispanic exchange. Journal of Archaeological Science, 2021, 136, 105511.	1.2	4
102	Fibrous Platinum-Group Minerals in "Floating Chromitites―from the Loma Larga Ni-Laterite Deposit, Dominican Republic. Minerals (Basel, Switzerland), 2016, 6, 126.	0.8	3
103	The Discovery of the Romero VMS Deposit and Its Bearing on the Metallogenic Evolution of Hispaniola during the Cretaceous. Minerals (Basel, Switzerland), 2018, 8, 507.	0.8	3
104	Sandstone-Hosted Uranium Deposits as a Possible Source for Critical Elements: The Eureka Mine Case, Castell-Estaó, Catalonia. Minerals (Basel, Switzerland), 2020, 10, 34.	0.8	3
105			

#	Article	IF	CITATIONS
109	Geological context and origin of the mineralization of the historic and prehistoric iron mines in the Gaval€ area, Catalonia, NE Iberian Peninsula. Boletin De La Sociedad Geologica Mexicana, 2019, 71, 321-342.	0.1	2
110	A record of metasomatism and crustal contamination of the Mediterranean lithosphere in chromitites of the Orhaneli Ophiolite Complex (NW Türkiye). Journal of Asian Earth Sciences, 2022, 236, 105311.	1.0	2
111	Crystallographic information data of natural occurring zaccariniite (RhNiAs) obtained by means of precession electron diffraction. Data in Brief, 2019, 25, 104346.	0.5	1
112	The Haidbach deposit in the Central Tauern Window, Eastern Alps, Austria: a metamorphosed orthomagmatic Ni-Cu-Co-PGE mineralization in the Polymetallic Ore District Venediger Nappe System – Hollersbach Complex. Austrian Journal of Earth Sciences, 2021, 114, 1-26.	0.9	1
113	Comments on the paper "Ti-poor high-Al chromitites of the Moa-Baracoa ophiolitic massif (eastern) Tj ETQq1 1 2022, 148, 105019.	0.78431 1.1	4 rgBT /Ove 1
114	Introduction to Special Issue "Mafic and Ultramafic Complexes of Latin America and the Caribbean― Journal of South American Earth Sciences, 2009, 28, 323-324.	0.6	0
115	Metallogenic and tectonomagmatic evolution of Mexico during the Mesozoic: Preface. Ore Geology Reviews, 2017, 81, 1033-1034.	1.1	0
116	Natural and anthropogenic origin of chromium, nickel and manganese in groundwater in the Moa region (eastern Cuba). , 2005, , .		0
117	Dissolution kinetics of garnierites from the Falcondo Ni-Laterite deposit (Dominican Republic) under acidic conditions. Applied Geochemistry, 2022, 143, 105357.	1.4	0