
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1791310/publications.pdf Version: 2024-02-01

P A SANTOS

#	Article	IF	CITATIONS
1	Plasma copeptin is increased and associated with smaller kidney volume in young adults born very preterm. CKJ: Clinical Kidney Journal, 2022, 15, 709-717.	1.4	0
2	Peptide fragments of bradykinin show unexpected biological activity not mediated by B ₁ or B ₂ receptors. British Journal of Pharmacology, 2022, 179, 3061-3077.	2.7	5
3	Diminazene Aceturate, an angiotensin converting enzyme 2 (ACE2) activator, promotes cardioprotection in ischemia/reperfusion-induced cardiac injury. Peptides, 2022, 151, 170746.	1.2	6
4	Alamandine Induces Neuroprotection in Ischemic Stroke Models. Current Medicinal Chemistry, 2022, 29, 3483-3498.	1.2	2
5	Genetic deletion of Mas receptor in FVB/N mice impairs cardiac use of glucose and lipids. Peptides, 2022, 151, 170764.	1.2	1
6	Reshaping the Preterm Heart: Shifting Cardiac Renin-Angiotensin System Towards Cardioprotection in Rats Exposed to Neonatal High-Oxygen Stress. Hypertension, 2022, 79, 1789-1803.	1.3	1
7	Phosphoproteomic studies of alamandine signaling in CHOâ€MrgD and human pancreatic carcinoma cells: An antiproliferative effect is unveiled. Proteomics, 2022, 22, .	1.3	2
8	Altered heart cytokine profile and action potential modulation in cardiomyocytes from Mas-deficient mice. Biochemical and Biophysical Research Communications, 2022, 619, 90-96.	1.0	0
9	Mesoporous silica nanoparticles loaded with alamandine as a potential new therapy against cancer. Journal of Drug Delivery Science and Technology, 2021, 61, 102216.	1.4	1
10	Alamandine through MrgD receptor induces antidepressant-like effect in transgenic rats with low brain angiotensinogen. Hormones and Behavior, 2021, 127, 104880.	1.0	8
11	Relevance of angiotensin-(1-7) and its receptor Mas in pneumonia caused by influenza virus and post-influenza pneumococcal infection. Pharmacological Research, 2021, 163, 105292.	3.1	8
12	Alamandine improves cardiac remodeling induced by transverse aortic constriction in mice. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H352-H363.	1.5	20
13	Angiotensinâ€(1â€7) prevents T3â€induced cardiomyocyte hypertrophy by upregulating FOXO3/SOD1/catalase and downregulating NFâ€Ä,B. Journal of Cellular Physiology, 2021, 236, 3059-3072.	2.0	11
14	Oral Formulation of Angiotensin-(1-7) Promotes Therapeutic Actions in a Model of Eosinophilic and Neutrophilic Asthma. Frontiers in Pharmacology, 2021, 12, 557962.	1.6	3
15	Angiotensin-(1-7) Central Mechanisms After ICV Infusion in Hypertensive Transgenic (mRen2)27 Rats. Frontiers in Neuroscience, 2021, 15, 624249.	1.4	6
16	AT1 and AT2 Receptor Knockout Changed Osteonectin and Bone Density in Mice in Periodontal Inflammation Experimental Model. International Journal of Molecular Sciences, 2021, 22, 5217.	1.8	4
17	Interaction Between the Angiotensin-($1\hat{a}\in$ 7) Mas Receptor and the Dopamine D2 Receptor. Hypertension, 2021, 77, 1659-1669.	1.3	8
18	Angiotensin-(1–7) oral formulation improves physical performance in mountain bike athletes: a doubleâ€blinded crossover study. BMC Sports Science, Medicine and Rehabilitation, 2021, 13, 47.	0.7	2

#	Article	IF	CITATIONS
19	Enhancing the Interaction Between MAS and ETB Receptors is Vasoprotective. FASEB Journal, 2021, 35, .	0.2	0
20	Oral administration of angiotensinâ€{1–7) decreases muscle damage and prevents the fibrosis in rats after eccentric exercise. Experimental Physiology, 2021, 106, 1710-1719.	0.9	3
21	Increased circulating levels of angiotensin-(1–7) in severely ill COVID-19 patients. ERJ Open Research, 2021, 7, 00114-2021.	1.1	36
22	Sulfonamide-Functionalized Polymeric Nanoparticles For Enhanced In Vivo Colorectal Cancer Therapy. Current Drug Delivery, 2021, 18, .	0.8	0
23	Asthma: role of the angiotensinâ€{1â€7)/Mas (MAS1) pathway in pathophysiology and therapy. British Journal of Pharmacology, 2021, 178, 4428-4439.	2.7	7
24	Rare and intractable fibrodysplasia ossificans progressiva shows different PBMC phenotype possibly modulated by ascorbic acid and propranolol treatment. Intractable and Rare Diseases Research, 2021, 10, 179-189.	0.3	0
25	Alamandine but not angiotensin-(1–7) produces cardiovascular effects at the rostral insular cortex. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 321, R513-R521.	0.9	11
26	Hemodynamic phenotyping of transgenic rats with ubiquitous expression of an angiotensin-(1-7)-producing fusion protein. Clinical Science, 2021, 135, 2197-2216.	1.8	4
27	Angiotensin-(1-7)/Mas receptor modulates anti-inflammatory effects of exercise training in a model of chronic allergic lung inflammation. Life Sciences, 2021, 282, 119792.	2.0	1
28	Quantifying Renin-Angiotensin-System Alterations in COVID-19. Cells, 2021, 10, 2755.	1.8	21
29	The Receptor AT1 Appears to Be Important for the Maintenance of Bone Mass and AT2 Receptor Function in Periodontal Bone Loss Appears to Be Regulated by AT1 Receptor. International Journal of Molecular Sciences, 2021, 22, 12849.	1.8	2
30	Oral Treatment with Angiotensin-(1-7) Attenuates the Kidney Injury Induced by Gentamicin in Wistar Rats. Protein and Peptide Letters, 2021, 28, .	0.4	2
31	Counter-regulatory renin–angiotensin system in cardiovascular disease. Nature Reviews Cardiology, 2020, 17, 116-129.	6.1	371
32	Alamandine enhances cardiomyocyte contractility in hypertensive rats through a nitric oxide-dependent activation of CaMKII. American Journal of Physiology - Cell Physiology, 2020, 318, C740-C750.	2.1	22
33	Oral formulation angiotensin-(1-7) therapy attenuates pulmonary and systemic damage in mice with emphysema induced by elastase. Immunobiology, 2020, 225, 151893.	0.8	18
34	The Novel Angiotensin-(1–7) Analog, A-1317, Improves Insulin Resistance by Restoring Pancreatic β-Cell Functionality in Rats With Metabolic Syndrome. Frontiers in Pharmacology, 2020, 11, 1263.	1.6	5
35	Different reactive species modulate the hypotensive effect triggered by angiotensins at CVLM of 2K1C hypertensive rats. Peptides, 2020, 134, 170409.	1.2	0
36	Localization of angiotensin-(1-7) and Mas receptor in the rat ovary throughout the estrous cycle. Journal of Molecular Histology, 2020, 51, 639-647.	1.0	2

#	Article	IF	CITATIONS
37	Antioxidant Solution in Combination with Angiotensin-(1-7) Provides Myocardial Protection in Langendorff-Perfused Rat Hearts. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-11.	1.9	4
38	Angiotensin-(1-7) Prevents Lipopolysaccharide-Induced Autophagy via the Mas Receptor in Skeletal Muscle. International Journal of Molecular Sciences, 2020, 21, 9344.	1.8	8
39	Characterization of the Renin-Angiotensin System in Aged Cavernosal Tissue and its Role in Penile Fibrosis. Journal of Sexual Medicine, 2020, 17, 2129-2140.	0.3	4
40	Treatment with inhaled formulation of angiotensin-(1-7) reverses inflammation and pulmonary remodeling in a model of chronic asthma. Immunobiology, 2020, 225, 151957.	0.8	14
41	Genetic deletion of the angiotensin-(1–7) receptor Mas leads to alterations in gut villi length modulating TLR4/PI3K/AKT and produces microbiome dysbiosis. Neuropeptides, 2020, 82, 102056.	0.9	17
42	Activation of Ang-(1-7)/Mas Receptor Is a Possible Strategy to Treat Coronavirus (SARS-CoV-2) Infection. Frontiers in Physiology, 2020, 11, 730.	1.3	35
43	Maternal obesity modulates both the renin–angiotensin system in mice dams and fetal adiposity. Journal of Nutritional Biochemistry, 2020, 84, 108413.	1.9	4
44	Moving Pieces in a Cellular Puzzle: A Cryptic Peptide from the Scorpion Toxin Ts14 Activates AKT and ERK Signaling and Decreases Cardiac Myocyte Contractility via Dephosphorylation of Phospholamban. Journal of Proteome Research, 2020, 19, 3467-3477.	1.8	4
45	Angiotensinâ€(1â€7) and Obesity: Role in Cardiorespiratory Fitness and COVIDâ€19 Implications. Obesity, 2020, 28, 1786-1786.	1.5	6
46	Angiotensin-(1-7) receptor Mas antagonist (A779) influenced gliosis and reduced synaptic density in the spinal cord after peripheral axotomy. Peptides, 2020, 129, 170329.	1.2	1
47	ACE2 in the renin–angiotensin system. Clinical Science, 2020, 134, 3063-3078.	1.8	30
48	Antioxidant Effects of Oral Ang-(1-7) Restore Insulin Pathway and RAS Components Ameliorating Cardiometabolic Disturbances in Rats. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-10.	1.9	12
49	Effect of preventive or therapeutic treatment with angiotensin 1–7 in a model of bleomycin-induced lung fibrosis in mice. Journal of Leukocyte Biology, 2019, 106, 677-686.	1.5	17
50	Oral Ang-(1-7) treatment improves white adipose tissue remodeling and hypertension in rats with metabolic syndrome. Nutrition: X, 2019, 1, 100004.	0.2	3
51	Angiotensin-(1-7) oral treatment after experimental myocardial infarction leads to downregulation of CXCR4. Journal of Proteomics, 2019, 208, 103486.	1.2	13
52	Angiotensin II type 2 receptor mediates high fat diet-induced cardiomyocyte hypertrophy and hypercholesterolemia. Molecular and Cellular Endocrinology, 2019, 498, 110576.	1.6	5
53	Propranolol and ascorbic acid in control of fibrodysplasia ossificans progressiva flare-ups due to accidental falls. Intractable and Rare Diseases Research, 2019, 8, 24-28.	0.3	4
54	Angiotensin-(1-7) and Alamandine Promote Anti-inflammatory Response in Macrophages <i>In Vitro</i> and <i>In Vivo</i> . Mediators of Inflammation, 2019, 2019, 1-14.	1.4	44

#	Article	IF	CITATIONS
55	Alamandine attenuates arterial remodelling induced by transverse aortic constriction in mice. Clinical Science, 2019, 133, 629-643.	1.8	27
56	The renin-angiotensin system: going beyond the classical paradigms. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H958-H970.	1.5	218
57	Sclareol-loaded lipid nanoparticles improved metabolic profile in obese mice. Life Sciences, 2019, 218, 292-299.	2.0	16
58	Genetic deletion of the alamandine receptor MRGD leads to dilated cardiomyopathy in mice. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H123-H133.	1.5	35
59	Heart– Coronary Vessels and Cardiomyocytes. , 2019, , 73-81.		2
60	Lifetime overproduction of circulating angiotensin-(1-7) in rats attenuates the increase in skeletal muscle damage biomarkers after exhaustive exercise. Chinese Journal of Physiology, 2019, 62, 226.	0.4	7
61	Behavioral effects of Bj-PRO-7a, a proline-rich oligopeptide from Bothrops jararaca venom. Brazilian Journal of Medical and Biological Research, 2019, 52, e8441.	0.7	4
62	Tools for Studying Angiotensin-(1-7). , 2019, , 29-34.		0
63	Mas receptor antagonist inhibits the pro-resolutive effects of Angiotensin-(1-7) in an experimental model of asthma. , 2019, , .		0
64	Angiotensin-(1-7) therapy attenuates pulmonary emphysema and sickness behavior induced by elastase in a murine model. , 2019, , .		0
65	Effects of treatment with angiotensin-(1-7) on antigen sensitization of murine experimental model of asthma. , 2019, , .		0
66	Late Breaking Abstract - Oral formulation of angiotensin-(1-7) promotes resolution of eosinophilic and neutrophilic inflammation in an experimental asthma model. , 2019, , .		0
67	Depletion of angiotensin-converting enzyme 2 reduces brain serotonin and impairs the running-induced neurogenic response. Cellular and Molecular Life Sciences, 2018, 75, 3625-3634.	2.4	53
68	A long-lasting oral preformulation of the angiotensin II AT1 receptor antagonist losartan. Drug Development and Industrial Pharmacy, 2018, 44, 1498-1505.	0.9	9
69	Neuroprotection by postâ€stroke administration of an oral formulation of angiotensinâ€(1–7) in ischaemic stroke. Experimental Physiology, 2018, 103, 916-923.	0.9	29
70	Lack of interferonâ€gamma attenuates foreign body reaction to subcutaneous implants in mice. Journal of Biomedical Materials Research - Part A, 2018, 106, 2243-2250.	2.1	7
71	Ghrelin potentiates cardiac reactivity to stress by modulating sympathetic control and beta-adrenergic response. Life Sciences, 2018, 196, 84-92.	2.0	10
72	Apelinâ€13 treatment enhances the stability of atherosclerotic plaques. European Journal of Clinical Investigation, 2018, 48, e12891.	1.7	24

#	Article	IF	CITATIONS
73	GABA-containing liposomes: neuroscience applications and translational perspectives for targeting neurological diseases. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 781-788.	1.7	18
74	Cyclooxygenase-2 Selectively Controls Renal Blood Flow Through a Novel PPARβ/δ-Dependent Vasodilator Pathway. Hypertension, 2018, 71, 297-305.	1.3	32
75	Angiotensin-(1–7) reduces cardiac effects of thyroid hormone by GSK3Β/NFATc3 signaling pathway. Clinical Science, 2018, 132, 1117-1133.	1.8	8
76	Identification of protein phosphatase involvement in the AT2 receptor-induced activation of endothelial nitric oxide synthase. Clinical Science, 2018, 132, 777-790.	1.8	35
77	Mir-513a-3p contributes to the controlling of cellular migration processes in the A549 lung tumor cells by modulating integrin β-8 expression. Molecular and Cellular Biochemistry, 2018, 444, 43-52.	1.4	14
78	Cardioprotective effect of thyroid hormone is mediated by AT2 receptor and involves nitric oxide production via Akt activation in mice. Heart and Vessels, 2018, 33, 671-681.	0.5	9
79	The Meaning of Mas. Hypertension, 2018, 72, 1072-1075.	1.3	46
80	Kidney Size, Renal Function, Ang (Angiotensin) Peptides, and Blood Pressure in Young Adults Born Preterm. Hypertension, 2018, 72, 918-928.	1.3	61
81	A16408 THE LACK OF ALAMANDINE EFFECTS ON ISCHEMIA/REPERFUSION IN TG (mREN-2)27 RATS HEARTS IS ASSOCIATED TO BLUNTED EXPRESSION OF MrgD RECEPTOR. Journal of Hypertension, 2018, 36, e87.	0.3	0
82	A16523 Mapping of the angiotensin AT2 receptor-coupled signalling network by time-resolved quantitative phosphoproteomics in human aortic endothelial cells identified HDAC-1 and p53 to be involved in AT2 receptor-mediated anti-proliferation. Journal of Hypertension, 2018, 36, e40.	0.3	0
83	Endothelium and the Renin-Angiotensin System. , 2018, , 203-211.		1
84	Physical training improves thermogenesis and insulin pathway, and induces remodeling in white and brown adipose tissues. Journal of Physiology and Biochemistry, 2018, 74, 441-454.	1.3	19
85	Eccentric Overload Muscle Damage is Attenuated By a Novel Angiotensin- (1-7) Treatment. International Journal of Sports Medicine, 2018, 39, 743-748.	0.8	21
86	The ACE2/Angiotensin-(1–7)/MAS Axis of the Renin-Angiotensin System: Focus on Angiotensin-(1–7). Physiological Reviews, 2018, 98, 505-553.	13.1	756
87	Alamandine acts via MrgD to induce AMPK/NO activation against ANG II hypertrophy in cardiomyocytes. American Journal of Physiology - Cell Physiology, 2018, 314, C702-C711.	2.1	55
88	Angiotensin-(1–7) Promotes Resolution of Eosinophilic Inflammation in an Experimental Model of Asthma. Frontiers in Immunology, 2018, 9, 58.	2.2	59
89	Age-related changes in vascular responses to angiotensin-(1-7) in female mice. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2018, 19, 147032031878933.	1.0	14
90	The usefulness of short-term high-fat/high salt diet as a model of metabolic syndrome in mice. Life Sciences, 2018, 209, 341-348.	2.0	8

#	Article	IF	CITATIONS
91	Genetic deletion of the Angiotensin-(1–7) receptor Mas leads to a reduced ovulatory rate. Peptides, 2018, 107, 83-88.	1.2	7
92	Inhaled formulation of angiotensin-(1-7) produces lung protective effects in a model of chronic asthma , 2018, , .		1
93	Abstract P250: Unveiling Binding Pocket Structure Of Mas Receptor And Its Interaction With Angiotensin-(1-7). Hypertension, 2018, 72, .	1.3	1
94	Abstract P240: Identifying the Angiotensin AT2-Receptor Coupled Phosphoproteome in Human Aortic Endothelial Cells by Time-Resolved, Quantitative Phosphoproteomics. Hypertension, 2018, 72, .	1.3	0
95	Alamandine reduces eosinophilic inflammation in an experimental model of asthma. , 2018, , .		0
96	Bj-PRO-5a and Bj-PRO 10c Found at C-Type Natriuretic Peptide Precursor of Bothrops jararaca Change Renal Function of Hypertensive Rats. International Journal of Peptide Research and Therapeutics, 2017, 23, 381-385.	0.9	2
97	Glucagon-producing cells are increased in Mas-deficient mice. Endocrine Connections, 2017, 6, 27-32.	0.8	6
98	Angiotensin-(1–7) in human follicular fluid correlates with oocyte maturation. Human Reproduction, 2017, 32, 1318-1324.	0.4	38
99	Swimming training induces liver adaptations to oxidative stress and insulin sensitivity in rats submitted to high-fat diet. Redox Report, 2017, 22, 515-523.	1.4	12
100	Reduced anxiety-like behavior in transgenic rats with chronically overproduction of angiotensin-(1–7): Role of the Mas receptor. Behavioural Brain Research, 2017, 331, 193-198.	1.2	39
101	Evidence for Heterodimerization and Functional Interaction of the Angiotensin Type 2 Receptor and the Receptor MAS. Hypertension, 2017, 69, 1128-1135.	1.3	87
102	Improved cardiovascular autonomic modulation in transgenic rats expressing an Ang-(1-7)-producing fusion protein. Canadian Journal of Physiology and Pharmacology, 2017, 95, 993-998.	0.7	8
103	Long-term effects of angiotensin-(1–7) on lipid metabolism in the adipose tissue and liver. Peptides, 2017, 92, 16-22.	1.2	12
104	Sub-additive effects of photodynamic therapy combined with erlotinib for the treatment of epidermoid carcinoma: An in vitro study. Photodiagnosis and Photodynamic Therapy, 2017, 18, 252-256.	1.3	5
105	Chronic overexpression of angiotensin-(1-7) in rats reduces cardiac reactivity to acute stress and dampens anxious behavior. Stress, 2017, 20, 189-196.	0.8	26
106	Alamandine abrogates neutrophil degranulation in atherosclerotic mice. European Journal of Clinical Investigation, 2017, 47, 117-128.	1.7	15
107	Moving pieces in a cryptomic puzzle: Cryptide from Tityus serrulatus Ts3 Nav toxin as potential agonist of muscarinic receptors. Peptides, 2017, 98, 70-77.	1.2	10
108	The hemoglobin derived peptide LVV-hemorphin-7 evokes behavioral effects mediated by oxytocin receptors. Neuropeptides, 2017, 66, 59-68.	0.9	14

#	Article	IF	CITATIONS
109	Pattern of Mas expression in acute and post-acute stage of nerve injury in mice. Peptides, 2017, 96, 15-19.	1.2	5
110	Hypotensive effect induced by microinjection of Alamandine, a derivative of angiotensin-(1–7), into caudal ventrolateral medulla of 2K1C hypertensive rats. Peptides, 2017, 96, 67-75.	1.2	28
111	MAS1 Receptor Trafficking Involves ERK1/2 Activation Through a β-Arrestin2–Dependent Pathway. Hypertension, 2017, 70, 982-989.	1.3	21
112	The angiotensin type 2 receptor and the kidney. Current Opinion in Nephrology and Hypertension, 2017, 26, 36-42.	1.0	14
113	Cardiovascular effects of small peptides of the renin angiotensin system. Physiological Reports, 2017, 5, e13505.	0.7	8
114	Ts14 from Tityus serrulatus boosts angiogenesis and attenuates inflammation and collagen deposition in sponge-induced granulation tissue in mice. Peptides, 2017, 98, 63-69.	1.2	16
115	Exercise modulates the aortic renin-angiotensin system independently of estrogen therapy in ovariectomized hypertensive rats. Peptides, 2017, 87, 41-49.	1.2	13
116	Angiotensin-(1-7) Promotes Resolution of Neutrophilic Inflammation in a Model of Antigen-Induced Arthritis in Mice. Frontiers in Immunology, 2017, 8, 1596.	2.2	36
117	Validation of commercial Mas receptor antibodies for utilization in Western Blotting, immunofluorescence and immunohistochemistry studies. PLoS ONE, 2017, 12, e0183278.	1.1	19
118	Influence of antihypertensive drugs on aortic and coronary effects of Ang-(1-7) in pressure-overloaded rats. Brazilian Journal of Medical and Biological Research, 2017, 50, e5520.	0.7	3
119	Vascular Reactivity of Isolated Aorta to Study the Angiotensin-(1-7) Actions. Methods in Molecular Biology, 2017, 1527, 369-379.	0.4	3
120	Vasodilator Effect of Angiotensin-(1-7) on Vascular Coronary Bed of Rats: Role of Mas, ACE and ACE2. Protein and Peptide Letters, 2017, 24, 869-875.	0.4	23
121	Angiotensin-(1-7) Influences Tryptophan Absorption in the Rat and Mouse Intestine. British Journal of Medicine and Medical Research, 2017, 19, 1-9.	0.2	5
122	Abstract 138: Mas-related G-protein Coupled Receptor D Deficiency Leads to a Marked Dilated Cardiomyopathy in Mice. Hypertension, 2017, 70, .	1.3	0
123	Identification of a Novel Agonist-Like Autoantibody in Preeclamptic Patients. American Journal of Hypertension, 2016, 29, 405-412.	1.0	16
124	Characterization of an experimental model of progressive renal disease in rats. Acta Cirurgica Brasileira, 2016, 31, 744-752.	0.3	7
125	CD36/Sirtuin 1 Axis Impairment Contributes to Hepatic Steatosis in ACE2-Deficient Mice. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-11.	1.9	13
126	Genetic Deletion of ACE2 Induces Vascular Dysfunction in C57BL/6 Mice: Role of Nitric Oxide Imbalance and Oxidative Stress. PLoS ONE, 2016, 11, e0150255.	1.1	52

#	Article	IF	CITATIONS
127	Effects of lipoic acid on growth and biochemical responses of common carp fed with carbohydrate diets. Fish Physiology and Biochemistry, 2016, 42, 1699-1707.	0.9	10
128	Chronic allergic pulmonary inflammation is aggravated in angiotensin-(1–7) Mas receptor knockout mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 311, L1141-L1148.	1.3	29
129	KR12 peptide associated with cyclodextrin: Antimicrobial and antitumor activities. Biointerphases, 2016, 11, 04B307.	0.6	5
130	OS 15-08 Ang(1–7) INFLUENCES ET-1 SIGNALING THROUGH MAS. Journal of Hypertension, 2016, 34, e216.	0.3	0
131	Therapeutic uses for Angiotensin-(1-7). Expert Opinion on Therapeutic Patents, 2016, 26, 669-678.	2.4	25
132	Effects of ACE2 deficiency on physical performance and physiological adaptations of cardiac and skeletal muscle to exercise. Hypertension Research, 2016, 39, 506-512.	1.5	45
133	Cardioprotective effects of diminazene aceturate in pressure-overloaded rat hearts. Life Sciences, 2016, 155, 63-69.	2.0	20
134	Liposome-entrapped GABA modulates the expression of nNOS in NG108-15 cells. Journal of Neuroscience Methods, 2016, 273, 55-63.	1.3	13
135	Ibuprofen arginate retains eNOS substrate activity and reverses endothelial dysfunction: implications for the COXâ€2/ADMA axis. FASEB Journal, 2016, 30, 4172-4179.	0.2	8
136	Anxiolytic- and antidepressant-like effects of angiotensin-(1–7) in hypertensive transgenic (mRen2)27 rats. Clinical Science, 2016, 130, 1247-1255.	1.8	34
137	Mas receptor contributes to pregnancy-induced cardiac remodelling. Clinical Science, 2016, 130, 2305-2316.	1.8	4
138	Neprilysin is a Mediator of Alternative Renin-Angiotensin-System Activation in the Murine and Human Kidney. Scientific Reports, 2016, 6, 33678.	1.6	70
139	[PS 01-28] AT2-RECEPTOR STIMULATION PROMOTES NO RELEASE THROUGH eNOS SERINE1177 PHOSPHORYLATION AND eNOS TYROSINE657 DEPHOSPHORYLATION. Journal of Hypertension, 2016, 34, e103.	0.3	0
140	JS ISH-ECCR-2 ANG-(1–7) AND ET-1, A NEW PARTNERSHIP. Journal of Hypertension, 2016, 34, e382.	0.3	2
141	Increased vascular sympathetic modulation in mice with Mas receptor deficiency. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2016, 17, 147032031664364.	1.0	11
142	Brain angiotensin-(1–7)/Mas axis: A new target to reduce the cardiovascular risk to emotional stress. Neuropeptides, 2016, 56, 9-17.	0.9	31
143	Angiotensin-(1-7) attenuates disuse skeletal muscle atrophy via the Mas receptor. DMM Disease Models and Mechanisms, 2016, 9, 441-9.	1.2	65
144	Cardiac ACE2/angiotensin 1–7/Mas receptor axis is activated in thyroid hormone-induced cardiac hypertrophy. Therapeutic Advances in Cardiovascular Disease, 2016, 10, 192-202.	1.0	22

#	Article	IF	CITATIONS
145	Mir-351-5p contributes to the establishment of a pro-inflammatory environment in the H9c2 cell line by repressing PTEN expression. Molecular and Cellular Biochemistry, 2016, 411, 363-371.	1.4	16
146	Angiotensin-(1-7)/Mas axis modulates fear memory and extinction in mice. Neurobiology of Learning and Memory, 2016, 127, 27-33.	1.0	20
147	3â€Angiotensin 1–7 regulation of endothelin-1 system in pulmonary hypertension. Heart, 2015, 101, A1.3-A1.	1.2	0
148	Differential control of vasomotion by angiotensins in the rostral ventrolateral medulla of hypertensive rats. Neuropeptides, 2015, 53, 11-18.	0.9	5
149	Lack of weight gain after angiotensin <scp>AT</scp> ₁ receptor blockade in dietâ€induced obesity is partly mediated by an angiotensinâ€(1–7)/ <scp>M</scp> asâ€dependent pathway. British Journal of Pharmacology, 2015, 172, 3764-3778.	2.7	47
150	Time-course effects of aerobic exercise training on cardiovascular and renal parameters in 2K1C renovascular hypertensive rats. Brazilian Journal of Medical and Biological Research, 2015, 48, 1010-1022.	0.7	17
151	Association of testosterone with estrogen abolishes the beneficial effects of estrogen treatment by increasing ROS generation in aorta endothelial cells. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H723-H732.	1.5	36
152	Activation of angiotensin-(1–7)/Mas axis in the brain lowers blood pressure and attenuates cardiac remodeling in hypertensive transgenic (mRen2)27 rats. Neuropharmacology, 2015, 97, 58-66.	2.0	29
153	Similarities and differences of X and Y chromosome homologous genes, SRY and SOX3, in regulating the renin-angiotensin system promoters. Physiological Genomics, 2015, 47, 177-186.	1.0	25
154	The effects of chronic candesartan treatment on cardiac and hepatic adenosine monophosphate-activated protein kinase in rats submitted to surgical stress. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2015, 16, 481-487.	1.0	3
155	<scp>A</scp> ngiotensinâ€(1â€7) attenuates airway remodelling and hyperresponsiveness in a model of chronic allergic lung inflammation. British Journal of Pharmacology, 2015, 172, 2330-2342.	2.7	81
156	Angiotensin-(1–7) through Mas receptor activation induces peripheral antinociception by interaction with adrenoreceptors. Peptides, 2015, 69, 80-85.	1.2	10
157	Structural libraries of protein models for multiple species to understand evolution of the renin-angiotensin system. General and Comparative Endocrinology, 2015, 215, 106-116.	0.8	10
158	Angiotensin typeÂ2 receptor (AT2R) and receptor Mas: a complex liaison. Clinical Science, 2015, 128, 227-234.	1.8	89
159	Beneficial Effects of Angiotensin-(1–7) Against Deoxycorticosterone Acetate–Induced Diastolic Dysfunction Occur Independently of Changes in Blood Pressure. Hypertension, 2015, 66, 389-395.	1.3	26
160	Exercise training restores oxidative stress and nitric oxide synthases in the rostral ventrolateral medulla of renovascular hypertensive rats. Free Radical Research, 2015, 49, 1335-1343.	1.5	23
161	Nanocarriers for Improved Delivery ofÂAngiotensin-(1-7). , 2015, , 275-279.		0
162	Mas Receptor. , 2015, , 197-200.		0

#	Article	IF	CITATIONS
163	Angiotensin-(1-7) and Mas. , 2015, , 155-159.		3
164	Mas Agonists. , 2015, , 281-285.		1
165	Angiotensins as therapeutic targets beyond heart disease. Trends in Pharmacological Sciences, 2015, 36, 310-320.	4.0	85
166	The effect of angiotensin-converting enzyme inhibition throughout a superovulation protocol in ewes. Research in Veterinary Science, 2015, 103, 205-210.	0.9	7
167	Pharmacological Activities and Hydrolysis by Peptidases of [Phospho-Ser6]-Bradykinin (pS6-BK). Biochemical Pharmacology, 2015, 97, 203-214.	2.0	2
168	Mas receptor deficiency exacerbates lipopolysaccharide-induced cerebral and systemic inflammation in mice. Immunobiology, 2015, 220, 1311-1321.	0.8	17
169	Diminazene enhances stability of atherosclerotic plaques in ApoE-deficient mice. Vascular Pharmacology, 2015, 74, 103-113.	1.0	20
170	Diminazene Protects Corpus Cavernosum Against Hypercholesterolemia-Induced Injury. Journal of Sexual Medicine, 2015, 12, 289-302.	0.3	20
171	Angiotensin-(1–7) in the basolateral amygdala attenuates the cardiovascular response evoked by acute emotional stress. Brain Research, 2015, 1594, 183-189.	1.1	31
172	Cardiovascular and behavioral effects produced by administration of liposome-entrapped GABA into the rat central nervous system. Neuroscience, 2015, 285, 60-69.	1.1	15
173	Abstract P110: Mrgd Expression in Cardiovascular Related Areas. Hypertension, 2015, 66, .	1.3	3
174	Abstract P140: Alamandine Signaling in Cardiomyocytes in Health and Disease. Hypertension, 2015, 66, .	1.3	2
175	Renal Effects and Underlying Molecular Mechanisms of Long-Term Salt Content Diets in Spontaneously Hypertensive Rats. PLoS ONE, 2015, 10, e0141288.	1.1	28
176	Role of brain Angiontensinâ€(1â€7) in the gene expression of angiotensinergic receptors in the heart. FASEB Journal, 2015, 29, 1041.4.	0.2	0
177	Increased Circulating Angiotensinâ€(1â€7) in Transgenic Rats Modulates Lipogenic and Lipolytic Activities in Adipose Tissue. FASEB Journal, 2015, 29, 995.8.	0.2	Ο
178	Chronic Allergic Pulmonary Inflammation is Aggravated in Angiotensinâ€(1â€7) Mas Receptor Knockout Mice. FASEB Journal, 2015, 29, 1027.7.	0.2	0
179	Abstract 1148: Ang-(1-7) decreases HIF-1Î \pm and migration of oral squamous cell carcinoma. , 2015, , .		0
180	Nicotinamide phosphoribosyltransferase inhibition reduces intraplaque CXCL1 production and associated neutrophil infiltration in atherosclerotic mice. Thrombosis and Haemostasis, 2014, 112, 308-322.	1.8	44

#	Article	IF	CITATIONS
181	Cholinergic Signaling Exerts Protective Effects in Models of Sympathetic Hyperactivity-Induced Cardiac Dysfunction. PLoS ONE, 2014, 9, e100179.	1.1	43
182	Chronic oral administration of Ang-(1–7) improves skeletal muscle, autonomic and locomotor phenotypes in muscular dystrophy. Clinical Science, 2014, 127, 101-109.	1.8	34
183	An Increased Arginase Activity Is Associated with Corpus Cavernosum Impairment Induced by Hypercholesterolemia. Journal of Sexual Medicine, 2014, 11, 1173-1181.	0.3	16
184	Cardiovascular effects of angiotensin A: A novel peptide of the renin–angiotensin system. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2014, 15, 480-486.	1.0	24
185	Alamandine. Current Opinion in Nephrology and Hypertension, 2014, 23, 130-134.	1.0	75
186	Receptor Mas Protects Mice Against Hypothermia and Mortality Induced By Endotoxemia. Shock, 2014, 41, 331-336.	1.0	31
187	An orally active angiotensin-(1–7) inclusion compound and exercise training produce similar cardiovascular effects in spontaneously hypertensive rats. Peptides, 2014, 51, 65-73.	1.2	51
188	Increasing Angiotensin-(1–7) Levels in the Brain Attenuates Metabolic Syndrome–Related Risks in Fructose-Fed Rats. Hypertension, 2014, 63, 1078-1085.	1.3	37
189	Oral administration of angiotensin-(1–7) ameliorates type 2 diabetes in rats. Journal of Molecular Medicine, 2014, 92, 255-265.	1.7	74
190	Insights into cardiovascular effects of proline-rich oligopeptide (Bj-PRO-10c) revealed by structure–activity analyses: dissociation of antihypertensive and bradycardic effects. Amino Acids, 2014, 46, 401-413.	1.2	8
191	Ang-(1–7) activates the NO/cGMP and ATP-sensitive K+ channels pathway to induce peripheral antinociception in rats. Nitric Oxide - Biology and Chemistry, 2014, 37, 11-16.	1.2	24
192	Angiotensin-(1–7). Hypertension, 2014, 63, 1138-1147.	1.3	202
193	Restoration of muscle strength in dystrophic muscle by angiotensin-1-7 through inhibition of TGF-β signalling. Human Molecular Genetics, 2014, 23, 1237-1249.	1.4	143
194	Proteomic white adipose tissue analysis of obese mice fed with a high-fat diet and treated with oral angiotensin-(1–7). Peptides, 2014, 60, 56-62.	1.2	23
195	Angiotensin 1–7 Reduces Mortality and Rupture of Intracranial Aneurysms in Mice. Hypertension, 2014, 64, 362-368.	1.3	38
196	Mas and Its Related G Protein–Coupled Receptors, Mrgprs. Pharmacological Reviews, 2014, 66, 1080-1105.	7.1	147
197	New Components of the Renin-Angiotensin System: Alamandine and the Mas-Related G Protein-Coupled Receptor D. Current Hypertension Reports, 2014, 16, 433.	1.5	71
198	Swimming training promotes cardiac remodeling and alters the expression of mRNA and protein levels involved in calcium handling in hypertensive rats. Life Sciences, 2014, 117, 67-74.	2.0	9

#	Article	IF	CITATIONS
199	Participation of AT1 and Mas receptors in the modulation of inflammatory pain. Peptides, 2014, 61, 17-22.	1.2	15
200	Cross talk between angiotensin-(1–7)/Mas axis and sirtuins in adipose tissue and metabolism of high-fat feed mice. Peptides, 2014, 55, 158-165.	1.2	68
201	Butyrate impairs atherogenesis by reducing plaque inflammation and vulnerability and decreasing NFήB activation. Nutrition, Metabolism and Cardiovascular Diseases, 2014, 24, 606-613.	1.1	191
202	Treatment with Angiotensin-(1–7) reduces inflammation in carotid atherosclerotic plaques. Thrombosis and Haemostasis, 2014, 111, 736-747.	1.8	47
203	ACE2 Is Augmented in Dystrophic Skeletal Muscle and Plays a Role in Decreasing Associated Fibrosis. PLoS ONE, 2014, 9, e93449.	1.1	51
204	Voluntary exercise during 6 weeks induces pathological cardiovascular responses in MASâ€deficient mice (881.4). FASEB Journal, 2014, 28, 881.4.	0.2	0
205	Angiotensinâ€(1â€7) infusion in the brain reduced blood pressure and cardiac hypertrophy in (mRen2)27 transgenic hypertensive rats (LB647). FASEB Journal, 2014, 28, LB647.	0.2	1
206	Abstract 484: The Vasorelaxing / No Release Effect Of Angiotensin-(1-9) Is Independent Of At2, Mas Or Mrgd Receptors. Hypertension, 2014, 64, .	1.3	0
207	Abstract 483: Mas/AT2 Receptor Deficient Mice Present A Pronounced Endothelial Dysfunction That Is Exclusively Mas-Related. Hypertension, 2014, 64, .	1.3	0
208	Oral Angiotensin-(1–7) prevented obesity and hepatic inflammation by inhibition of resistin/TLR4/MAPK/NF-κB in rats fed with high-fat diet. Peptides, 2013, 46, 47-52.	1.2	114
209	<scp>AVE</scp> 0991, a nonâ€peptide mimic of angiotensinâ€(1–7) effects, attenuates pulmonary remodelling in a model of chronic asthma. British Journal of Pharmacology, 2013, 170, 835-846.	2.7	71
210	An Oral Formulation of Angiotensin-(1-7) Reverses Corpus Cavernosum Damages Induced by Hypercholesterolemia. Journal of Sexual Medicine, 2013, 10, 2430-2442.	0.3	34
211	Priming mesenchymal stem cells boosts stem cell therapy to treat myocardial infarction. Journal of Cellular and Molecular Medicine, 2013, 17, 617-625.	1.6	47
212	Age-dependent effect of high-fructose and high-fat diets on lipid metabolism and lipid accumulation in liver and kidney of rats. Lipids in Health and Disease, 2013, 12, 136.	1.2	95
213	Mechanisms of the anti-inflammatory actions of the angiotensin type 1 receptor antagonist losartan in experimental models of arthritis. Peptides, 2013, 46, 53-63.	1.2	66
214	Opportunities for Targeting the Angiotensin-Converting Enzyme 2/Angiotensin-(1-7)/Mas Receptor Pathway in Hypertension. Current Hypertension Reports, 2013, 15, 31-38.	1.5	51
215	Angiotensin-converting enzyme 2, angiotensin-(1–7) and Mas: new players of the renin–angiotensin system. Journal of Endocrinology, 2013, 216, R1-R17.	1.2	414
216	Functional Cross-Talk Between Aldosterone and Angiotensin-(1-7) in Ventricular Myocytes. Hypertension, 2013, 61, 425-430.	1.3	30

#	Article	IF	CITATIONS
217	Angiotensin-(1–7): beyond the cardio-renal actions. Clinical Science, 2013, 124, 443-456.	1.8	185
218	Proline rich-oligopeptides: Diverse mechanisms for antihypertensive action. Peptides, 2013, 48, 124-133.	1.2	30
219	The nonpeptide ANG-(1–7) mimic AVE 0991 attenuates cardiac remodeling and improves baroreflex sensitivity in renovascular hypertensive rats. Life Sciences, 2013, 92, 266-275.	2.0	28
220	Association of an oral formulation of angiotensin-(1–7) with atenolol improves lipid metabolism in hypertensive rats. Peptides, 2013, 43, 155-159.	1.2	10
221	Angiotensin-(1-7) attenuates the anxiety and depression-like behaviors in transgenic rats with low brain angiotensinogen. Behavioural Brain Research, 2013, 257, 25-30.	1.2	48
222	AVE 0991, a nonâ€peptide Masâ€receptor agonist, facilitates penile erection. Experimental Physiology, 2013, 98, 850-855.	0.9	19
223	Cardiovascular and eletrocardiographic parameters after tonin administration in Wistar rats. Regulatory Peptides, 2013, 181, 30-36.	1.9	8
224	Are Agonistic Autoantibodies against G-Protein Coupled Receptors Involved in the Development of Long-Term Side Effects of Tumor Chemotherapy. Case Reports in Oncology, 2013, 6, 104-108.	0.3	5
225	Activation of angiotensin-converting enzyme 2/angiotensin-(1–7)/Mas axis attenuates the cardiac reactivity to acute emotional stress. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 305, H1057-H1067.	1.5	43
226	Angiotensin II typeÂ1 receptor blockade restores angiotensin-(1–7)-induced coronary vasodilation in hypertrophic rat hearts. Clinical Science, 2013, 125, 449-459.	1.8	42
227	Treatment with Evasin-3 Reduces Atherosclerotic Vulnerability for Ischemic Stroke, but Not Brain Injury in Mice. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 490-498.	2.4	55
228	Mas receptor deficiency is associated with worsening of lipid profile and severe hepatic steatosis in ApoE-knockout mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 305, R1323-R1330.	0.9	28
229	Oral Formulation of Angiotensin-(1–7) Improves Lipid Metabolism and Prevents High-Fat Diet–Induced Hepatic Steatosis and Inflammation in Mice. Hypertension, 2013, 62, 324-330.	1.3	84
230	Discovery and Characterization of Alamandine. Circulation Research, 2013, 112, 1104-1111.	2.0	323
231	Angiotensin-Converting Enzyme 2 Activation Improves Endothelial Function. Hypertension, 2013, 61, 1233-1238.	1.3	80
232	Pathophysiological role of the renin–angiotensin system on erectile dysfunction. European Journal of Clinical Investigation, 2013, 43, 978-985.	1.7	35
233	Dose-response effects of the antioxidant α-lipoic acid in the liver and brain of pompano <i>Trachinotus marginatus</i> (Pisces, Carangidae). Journal of Applied Ichthyology, 2013, 29, 1123-1128.	0.3	11
234	Short-term cardiovascular physical programme ameliorates arterial stiffness and decreases oxidative stress in women with metabolic syndrome. Journal of Rehabilitation Medicine, 2013, 45, 572-579.	0.8	11

#	Article	IF	CITATIONS
235	Differential Mechanisms of Activation of the Ang Peptide Receptors AT1, AT2, and MAS: Using In Silico Techniques to Differentiate the Three Receptors. PLoS ONE, 2013, 8, e65307.	1.1	12
236	Treatment with CB ₂ Agonist JWH-133 Reduces Histological Features Associated with Erectile Dysfunction in Hypercholesterolemic Mice. Clinical and Developmental Immunology, 2013, 2013, 1-11.	3.3	8
237	The Novel Mas agonist, CCEN-856S, Attenuates Isoproterenol-Induced Cardiac Remodeling and Myocardial Infarction Injury in Rats. PLoS ONE, 2013, 8, e57757.	1.1	35
238	Beneficial Effects of the Activation of the Angiotensin-(1–7) Mas Receptor in a Murine Model of Adriamycin-Induced Nephropathy. PLoS ONE, 2013, 8, e66082.	1.1	57
239	The pressor effect of angiotensin-(1-7) in the rat rostral ventrolateral medulla involves multiple peripheral mechanisms. Clinics, 2013, 68, 245-252.	0.6	8
240	Intracerebroventricular injection of liposomeâ€entrapped GABA attenuates the renal sympathetic nerve activity response evoked by central administration of bicuculline in spontaneously hypertensive rats. FASEB Journal, 2013, 27, lb852.	0.2	0
241	Contribution of infralimbic cortex in the cardiovascular response to acute stress. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 303, R639-R650.	0.9	41
242	Modifications in basal and stress-induced hypothalamic AMP-activated protein kinase (AMPK) activity in rats chronically treated with an angiotensin II receptor blocker. Stress, 2012, 15, 554-561.	0.8	10
243	The activation of the cannabinoid receptor type 2 reduces neutrophilic protease-mediated vulnerability in atherosclerotic plaques. European Heart Journal, 2012, 33, 846-856.	1.0	81
244	Angiotensin-(1-7)-Mediated Signaling in Cardiomyocytes. International Journal of Hypertension, 2012, 2012, 1-8.	0.5	45
245	Chronic infusion of angiotensin-(1-7) into the lateral ventricle of the brain attenuates hypertension in DOCA-salt rats. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H393-H400.	1.5	53
246	Angiotensin-(1-7)/Angiotensin-Converting Enzyme 2/Mas Receptor Axis and Related Mechanisms. International Journal of Hypertension, 2012, 2012, 1-2.	0.5	15
247	Update on the Role of Cannabinoid Receptors after Ischemic Stroke. Mediators of Inflammation, 2012, 2012, 1-8.	1.4	34
248	Renoprotective Effects of AVE0991, a Nonpeptide Mas Receptor Agonist, in Experimental Acute Renal Injury. International Journal of Hypertension, 2012, 2012, 1-8.	0.5	51
249	New therapeutic pathways in the RAS. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2012, 13, 505-508.	1.0	32
250	Mas Receptor Agonists as Novel Antihypertensive Agents. Current Hypertension Reviews, 2012, 8, 24-34.	0.5	3
251	Molecular characterization and regulation of the angiotensin-converting enzyme type 2/Angiotensin-(1-7)/MAS receptor axis during the ovulation process in cattle. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2012, 13, 91-98.	1.0	40
252	New Cardiovascular and Pulmonary Therapeutic Strategies Based on the Angiotensin-Converting Enzyme 2/Angiotensin-(1–7)/Mas Receptor Axis. International Journal of Hypertension, 2012, 2012, 1-13.	0.5	59

#	Article	IF	CITATIONS
253	Beneficial Effects of Long-Term Administration of an Oral Formulation of Angiotensin-(1–7) in Infarcted Rats. International Journal of Hypertension, 2012, 2012, 1-12.	0.5	55
254	Effects of short-term administration of estradiol on reperfusion arrhythmias in rats of different ages. Brazilian Journal of Medical and Biological Research, 2012, 45, 1248-1254.	0.7	5
255	Role of Renin-Angiotensin System in Inflammation, Immunity and Aging. Current Pharmaceutical Design, 2012, 18, 963-970.	0.9	121
256	Blood Glucose Control for Individuals with Type-2 Diabetes. Journal of Strength and Conditioning Research, 2012, 26, 2806-2811.	1.0	12
257	Therapeutic targeting of the angiotensin-converting enzyme 2/Angiotensin-(1-7)/Mas cascade in the renin–angiotensin system: a patent review. Expert Opinion on Therapeutic Patents, 2012, 22, 567-574.	2.4	45
258	Tissue specific localization of angiotensin-(1–7) and its receptor Mas in the uterus of ovariectomized rats. Journal of Molecular Histology, 2012, 43, 597-602.	1.0	19
259	Oral administration of an angiotensin-converting enzyme 2 activator ameliorates diabetes-induced cardiac dysfunction. Regulatory Peptides, 2012, 177, 107-115.	1.9	69
260	Increased circulating angiotensin-(1–7) protects white adipose tissue against development of a proinflammatory state stimulated by a high-fat diet. Regulatory Peptides, 2012, 178, 64-70.	1.9	73
261	Nitric oxide at the CVLM is involved in the attenuation of the reflex bradycardia in renovascular hypertensive rats. Nitric Oxide - Biology and Chemistry, 2012, 26, 118-125.	1.2	10
262	Angiotensin-(1–7)/Mas axis integrity is required for the expression of object recognition memory. Neurobiology of Learning and Memory, 2012, 97, 113-123.	1.0	74
263	Angiotensin-(1–7) Mas-receptor deficiency decreases peroxisome proliferator-activated receptor gamma expression in adipocytes. Peptides, 2012, 33, 174-177.	1.2	37
264	The cardiac expression of Mas receptor is responsive to different physiological and pathological stimuli. Peptides, 2012, 35, 196-201.	1.2	29
265	Improvement of the energy supply and contractile function in normal and ischemic rat hearts by dietary orotic acid. Life Sciences, 2012, 90, 476-483.	2.0	11
266	Evidence that angiotensinâ€(1–7) is an intermediate of gonadotrophinâ€induced oocyte maturation in the rat preovulatory follicle. Experimental Physiology, 2012, 97, 642-650.	0.9	54
267	Angiotensinâ€converting enzyme inhibition increases glucoseâ€induced insulin secretion in response to acute restraint. Clinical and Experimental Pharmacology and Physiology, 2012, 39, 1034-1037.	0.9	0
268	Exercise induces renin–angiotensin system unbalance and high collagen expression in the heart of Mas-deficient mice. Peptides, 2012, 38, 54-61.	1.2	32
269	Decreased hepatic gluconeogenesis in transgenic rats with increased circulating angiotensin-(1-7). Peptides, 2012, 37, 247-251.	1.2	35
270	Altered regional blood flow distribution in Mas-deficient mice. Therapeutic Advances in Cardiovascular Disease, 2012, 6, 201-211.	1.0	35

#	Article	IF	CITATIONS
271	Time-Resolved Quantitative Phosphoproteomics: New Insights into Angiotensin-(1–7) Signaling Networks in Human Endothelial Cells. Journal of Proteome Research, 2012, 11, 3370-3381.	1.8	67
272	The Angiotensin-Converting Enzyme 2/Angiotensin-(1–7)/Mas receptor axis: A potential target for treating thrombotic diseases. Thrombosis and Haemostasis, 2012, 108, 1089-1096.	1.8	63
273	A biodegradable porous composite scaffold of PCL/BCP containing Ang-(1-7) for bone tissue engineering. Ceramica, 2012, 58, 481-488.	0.3	18
274	Angiotensin-(1–7) Induces Peripheral Antinociception through Mas Receptor Activation in an Opioid-Independent Pathway. Pharmacology, 2012, 89, 137-144.	0.9	27
275	Cardiovascular responses evoked by activation or blockade of GABAA receptors in the hypothalamic PVN are attenuated in transgenic rats with low brain angiotensinogen. Brain Research, 2012, 1448, 101-110.	1.1	37
276	Angiotensin-(1-7) receptor Mas is an essential modulator of extracellular matrix protein expression in the heart. Regulatory Peptides, 2012, 175, 30-42.	1.9	38
277	Interaction between bradykinin potentiating nonapeptide (BPP9a) and β-cyclodextrin: A structural and thermodynamic study. Materials Science and Engineering C, 2012, 32, 244-253.	3.8	9
278	Intracerebroventricular injection of liposomeâ€entrapped GABA attenuates the renal sympathetic nerve activity response evoked by central administration of bicuculline in anesthetized rats. FASEB Journal, 2012, 26, 1091.38.	0.2	1
279	Nonâ€peptide Agonist of the Receptor MAS, AVE 0991, Increases PPARα Expression in Muscle of Rats Fed Fructose―Rich Diet. FASEB Journal, 2012, 26, 714.6.	0.2	0
280	An Oral Formulation of Angiotensin-(1-7) Produces Cardioprotective Effects in Infarcted and Isoproterenol-Treated Rats. Hypertension, 2011, 57, 477-483.	1.3	124
281	Acute resistance exercise is more effective than aerobic exercise for 24h blood pressure control in type 2 diabetics. Diabetes and Metabolism, 2011, 37, 112-117.	1.4	42
282	Angiotensin-(1-7), its receptor Mas, and the angiotensin-converting enzyme type 2 are expressed in the human ovary. Fertility and Sterility, 2011, 95, 176-181.	0.5	145
283	Pharmaceutical Composition of Hydrochlorothiazide:β-Cyclo-dextrin: Preparation by Three Different Methods, Physico-Chemical Characterization and In Vivo Diuretic Activity Evaluation. Molecules, 2011, 16, 4482-4499.	1.7	36
284	Mas receptors in modulating relaxation induced by perivascular adipose tissue. Life Sciences, 2011, 89, 467-472.	2.0	37
285	Study of the BPP7a peptide and its β-cyclodextrin complex: physicochemical characterization and complete sequence specific NMR assignments. Journal of the Brazilian Chemical Society, 2011, 22, 1765-1773.	0.6	7
286	Cardiac and renal effects induced by different exercise workloads in renovascular hypertensive rats. Brazilian Journal of Medical and Biological Research, 2011, 44, 573-582.	0.7	23
287	New formulation of an old drug in hypertension treatment: the sustained release of captopril from cyclodextrin nanoparticles. International Journal of Nanomedicine, 2011, 6, 1005.	3.3	23
288	Angiotensin-converting enzyme 2 activation protects against hypertension-induced cardiac fibrosis involving extracellular signal-regulated kinases. Experimental Physiology, 2011, 96, 287-294.	0.9	98

#	Article	IF	CITATIONS
289	Angiotensin-(1-7) induces ovulation and steroidogenesis in perfused rabbit ovaries. Experimental Physiology, 2011, 96, 957-965.	0.9	37
290	ACE activity is modulated by the enzyme α-galactosidase A. Journal of Molecular Medicine, 2011, 89, 65-74.	1.7	17
291	Noninvasive method to estimate anaerobic threshold in individuals with type 2 diabetes. Diabetology and Metabolic Syndrome, 2011, 3, 1.	1.2	75
292	Supramolecular interactions between losartan and hydroxypropyl-β-CD: ESI mass-spectrometry, NMR techniques, phase solubility, isothermal titration calorimetry and anti-hypertensive studies. International Journal of Pharmaceutics, 2011, 404, 116-123.	2.6	43
293	Angiotensin (1-7) Induces Mas Receptor Internalization. Hypertension, 2011, 58, 176-181.	1.3	81
294	Angiotensin-converting enzyme inhibition changes the metabolic response to neuroglucopenic stress. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2011, 12, 153-160.	1.0	3
295	Angiotensin II profile and mRNA encoding RAS proteins during bovine follicular wave. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2011, 12, 475-482.	1.0	26
296	BPP-5a produces a potent and long-lasting NO-dependent antihypertensive effect. Therapeutic Advances in Cardiovascular Disease, 2011, 5, 281-295.	1.0	20
297	Swimming training improves the vasodilator effect of angiotensin-(1–7) in the aorta of spontaneously hypertensive rat. Journal of Applied Physiology, 2011, 111, 1272-1277.	1.2	40
298	Carbohydrate-enriched diet impairs cardiac performance by decreasing the utilization of fatty acid and glucose. Therapeutic Advances in Cardiovascular Disease, 2011, 5, 11-22.	1.0	4
299	Angioprotectin: an angiotensin Ilâ€like peptide causing vasodilatory effects. FASEB Journal, 2011, 25, 2987-2995.	0.2	38
300	The Angiotensin-(1-7)/Mas Receptor Axis Is Expressed in Sinoatrial Node Cells of Rats. Journal of Histochemistry and Cytochemistry, 2011, 59, 761-768.	1.3	36
301	Liposome-Encapsulated Neuropeptides for Site-Specific Microinjection. Methods in Molecular Biology, 2011, 789, 343-355.	0.4	7
302	An orally active formulation of angiotensin-(1-7) produces an antithrombotic effect. Clinics, 2011, 66, 837-841.	0.6	89
303	ACE2–angiotensin-(1–7)–Mas axis in renal ischaemia/reperfusion injury in rats. Clinical Science, 2010, 119, 385-394.	1.8	89
304	Blockage of Angiotensin II type 2 receptor prevents thyroxine-mediated cardiac hypertrophy by blocking Akt activation. Basic Research in Cardiology, 2010, 105, 325-335.	2.5	49
305	Structural and physical–chemical evaluation of Bradykinin Potentiating Peptide and its high soluble supramolecular complex. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2010, 67, 407-422.	1.6	17
306	Angiotensin (1–7) and its receptor Mas are expressed in the human testis: implications for male infertility. Journal of Molecular Histology, 2010, 41, 75-80.	1.0	81

#	Article	IF	CITATIONS
307	Angiotensinâ€converting enzyme 2: a new target for neurogenic hypertension. Experimental Physiology, 2010, 95, 601-606.	0.9	42
308	Improved Lipid and Glucose Metabolism in Transgenic Rats With Increased Circulating Angiotensin-(1-7). Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 953-961.	1.1	143
309	Vascular Relaxation, Antihypertensive Effect, and Cardioprotection of a Novel Peptide Agonist of the Mas Receptor. Hypertension, 2010, 56, 112-120.	1.3	106
310	Knockout of Angiotensin 1–7 Receptor Mas Worsens the Course of Two-Kidney, One-Clip Goldblatt Hypertension: Roles of Nitric Oxide Deficiency and Enhanced Vascular Responsiveness to Angiotensin II. Kidney and Blood Pressure Research, 2010, 33, 476-488.	0.9	35
311	Brain-Selective Overexpression of Human Angiotensin-Converting Enzyme Type 2 Attenuates Neurogenic Hypertension. Circulation Research, 2010, 106, 373-382.	2.0	168
312	Anti-Inflammatory Effects of the Activation of the Angiotensin-(1–7) Receptor, Mas, in Experimental Models of Arthritis. Journal of Immunology, 2010, 185, 5569-5576.	0.4	150
313	Lifetime Overproduction of Circulating Angiotensin-(1-7) Attenuates Deoxycorticosterone Acetate-Salt Hypertension-Induced Cardiac Dysfunction and Remodeling. Hypertension, 2010, 55, 889-896.	1.3	72
314	The Angiotensin-Converting Enzyme 2/Angiogenesis-(1–7)/Mas Axis Confers Cardiopulmonary Protection against Lung Fibrosis and Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 2010, 182, 1065-1072.	2.5	241
315	Therapeutic Implications of the Vasoprotective Axis of the Renin-Angiotensin System in Cardiovascular Diseases. Hypertension, 2010, 55, 207-213.	1.3	159
316	Angiotensin-(1-7) Prevents Cardiomyocyte Pathological Remodeling Through a Nitric Oxide/Guanosine 3′,5′-Cyclic Monophosphate–Dependent Pathway. Hypertension, 2010, 55, 153-160.	1.3	112
317	Pharmaceutical Composition of Valsartan: β-Cyclodextrin: Physico–Chemical Characterization and Anti-Hypertensive Evaluation. Molecules, 2010, 15, 4067-4084.	1.7	44
318	Structure–function studies of Tityus serrulatus Hypotensin-I (TsHpt-I): A new agonist of B2 kinin receptor. Toxicon, 2010, 56, 1162-1171.	0.8	43
319	A potent vasoactive cytolysin isolated from Scorpaena plumieri scorpionfish venom. Toxicon, 2010, 56, 487-496.	0.8	28
320	Attenuation of isoproterenol-induced cardiac fibrosis in transgenic rats harboring an angiotensin-(1-7)-producing fusion protein in the heart. Therapeutic Advances in Cardiovascular Disease, 2010, 4, 83-96.	1.0	46
321	Effect of type 2 diabetes on plasma kallikrein activity after physical exercise and its relationship to post-exercise hypotension. Diabetes and Metabolism, 2010, 36, 363-368.	1.4	24
322	Altered cardiovascular reflexes responses in conscious Angiotensin-(1-7) receptor Mas-knockout mice. Peptides, 2010, 31, 1934-1939.	1.2	31
323	BPPâ€1Oc from Bothrops jararaca venom changes behavioral and cardiovascular responses to acute stress exposure. FASEB Journal, 2010, 24, 811.4.	0.2	0
324	Chronic Treatment with an orally active formulation of Angiotensinâ€(1â€7) improves autonomic control in SHR. FASEB Journal, 2010, 24, lb532.	0.2	0

#	Article	IF	CITATIONS
325	Elevated Blood Pressure and Abnormal Evolution of Pregnancy in ACE2â€Deficient Female Mice. FASEB Journal, 2010, 24, 605.15.	0.2	0
326	Renin-angiotensin system in the pathogenesis of liver fibrosis. World Journal of Gastroenterology, 2009, 15, 2579.	1.4	74
327	Gonadotropin Stimulation Increases the Expression of Angiotensin-(1–7) and Mas Receptor in the Rat Ovary. Reproductive Sciences, 2009, 16, 1165-1174.	1.1	75
328	Angiotensin-(1-7) activates a tyrosine phosphatase and inhibits glucose-induced signalling in proximal tubular cells. Nephrology Dialysis Transplantation, 2009, 24, 1766-1773.	0.4	75
329	The role of angiotensinâ€(1–7) receptor Mas in spermatogenesis in mice and rats. Journal of Anatomy, 2009, 214, 736-743.	0.9	50
330	Angiotensin-(1-7) antagonist, A-779, microinjection into the caudal ventrolateral medulla of renovascular hypertensive rats restores baroreflex bradycardia. Peptides, 2009, 30, 1921-1927.	1.2	18
331	Genetic deletion of the angiotensin-(1–7) receptor Mas leads to glomerular hyperfiltration and microalbuminuria. Kidney International, 2009, 75, 1184-1193.	2.6	125
332	The Vasoactive Peptide Angiotensin-(1–7), Its Receptor Mas and the Angiotensin-converting Enzyme Type 2 are Expressed in the Human Endometrium. Reproductive Sciences, 2009, 16, 247-256.	1.1	105
333	Angiotensin-(1-7) in the Rabbit Ovary: A Novel Local Regulator of Ovulation Biology of Reproduction, 2009, 81, 566-566.	1.2	4
334	Relationship between angiotensin-(1-7) and angiotensin II correlates with hemodynamic changes in human liver cirrhosis. World Journal of Gastroenterology, 2009, 15, 2512.	1.4	35
335	Central administration of angiotensinâ€(1â€7) markedly reduces the tachycardia evoked by acute psychological stress exposure. FASEB Journal, 2009, 23, 609.5.	0.2	0
336	Selective increase of angiotensin(1–7) and its receptor in hearts of spontaneously hypertensive rats subjected to physical training. Experimental Physiology, 2008, 93, 589-598.	0.9	28
337	Recent advances in the angiotensinâ€converting enzyme 2–angiotensin(1–7)–Mas axis. Experimental Physiology, 2008, 93, 519-527.	0.9	380
338	Cardiovascular reactivity after blockade of angiotensin AT ₁ receptors in the experimental model of tilting test in conscious rats. British Journal of Pharmacology, 2008, 153, 966-971.	2.7	8
339	Baroreflex control of heart rate and renal sympathetic nerve activity in rats with low brain angiotensinogen. Neuropeptides, 2008, 42, 159-168.	0.9	11
340	Hemodynamic effect produced by microinjection of angiotensins at the caudal ventrolateral medulla of spontaneously hypertensive rats. Neuroscience, 2008, 151, 1208-1216.	1.1	19
341	Tityus serrulatus Hypotensins: A new family of peptides from scorpion venom. Biochemical and Biophysical Research Communications, 2008, 371, 515-520.	1.0	77
342	Reduced isoproterenol-induced renin-angiotensin changes and extracellular matrix deposition in hearts of TGR(A1–7)3292 rats. Journal of the American Society of Hypertension, 2008, 2, 341-348.	2.3	24

#	Article	IF	CITATIONS
343	Ablation of angiotensin (1-7) receptor Mas in C57Bl/6 mice causes endothelial dysfunction. Journal of the American Society of Hypertension, 2008, 2, 418-424.	2.3	63
344	Transgenic Angiotensin-Converting Enzyme 2 Overexpression in Vessels of SHRSP Rats Reduces Blood Pressure and Improves Endothelial Function. Hypertension, 2008, 52, 967-973.	1.3	166
345	Selective increase of angiotensin(1-7) and its receptor in hearts of spontaneously hypertensive rats subjected to physical training. Experimental Physiology, 2008, 93, 589-598.	0.9	53
346	<i>Mas</i> Deficiency in FVB/N Mice Produces Marked Changes in Lipid and Glycemic Metabolism. Diabetes, 2008, 57, 340-347.	0.3	219
347	Endothelial Dysfunction and Elevated Blood Pressure in <i>Mas</i> Gene-Deleted Mice. Hypertension, 2008, 51, 574-580.	1.3	178
348	Molecular Mechanisms Involved in the Angiotensin-(1-7)/Mas Signaling Pathway in Cardiomyocytes. Hypertension, 2008, 52, 542-548.	1.3	147
349	Structure-Based Identification of Small-Molecule Angiotensin-Converting Enzyme 2 Activators as Novel Antihypertensive Agents. Hypertension, 2008, 51, 1312-1317.	1.3	244
350	Angiotensin(1-7) Blunts Hypertensive Cardiac Remodeling by a Direct Effect on the Heart. Circulation Research, 2008, 103, 1319-1326.	2.0	206
351	A importância do ergodesign na avaliação de CD-ROM sobre dengue e doença de chagas na educação em saúde. Trabalho, Educação E Saúde, 2008, 6, 147-168.	¹ 1.0	2
352	The Antithrombotic Effect of Angiotensin-(1-7) Involves Mas-Mediated NO Release from Platelets. Molecular Medicine, 2008, 14, 28-35.	1.9	128
353	Development of hepatorenal syndrome in bile duct ligated rats. World Journal of Gastroenterology, 2008, 14, 4505.	1.4	36
354	Effect of propranolol on the splanchnic and peripheral renin angiotensin system in cirrhotic patients. World Journal of Gastroenterology, 2008, 14, 6824.	1.4	24
355	The renin-angiotensin system and diabetes: an update. Vascular Health and Risk Management, 2008, 4, 787-803.	1.0	107
356	Expression of an angiotensin-(1-7)-producing fusion protein in rats induced marked changes in regional vascular resistance. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H2485-H2490.	1.5	59
357	Evidence for Mas-Mediated Bradykinin Potentiation by the Angiotensin-(1-7) Nonpeptide Mimic AVE 0991 in Normotensive Rats. Hypertension, 2007, 50, 762-767.	1.3	43
358	Evidence that the vasodilator angiotensin-(1–7)-Mas axis plays an important role in erectile function. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H2588-H2596.	1.5	53
359	The ACE2-Ang-(1-7)-Mas Axis and Cardioprotection. Current Cardiology Reviews, 2007, 3, 57-64.	0.6	1
360	The nonpeptide angiotensin-(1–7) receptor Mas agonist AVE-0991 attenuates heart failure induced by myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H1113-H1119.	1.5	108

#	Article	IF	CITATIONS
361	Do the Cardiovascular Effects of Angiotensin-Converting Enzyme (ACE) I Involve ACE-Independent Mechanisms? New Insights from Proline-Rich Peptides of Bothrops jararaca. Journal of Pharmacology and Experimental Therapeutics, 2007, 322, 795-805.	1.3	55
362	Angiotensin-(1-7) Counterregulates Angiotensin II Signaling in Human Endothelial Cells. Hypertension, 2007, 50, 1093-1098.	1.3	239
363	Angiotensin-(1-7) Through Receptor Mas Mediates Endothelial Nitric Oxide Synthase Activation via Akt-Dependent Pathways. Hypertension, 2007, 49, 185-192.	1.3	470
364	Immunofluorescence localization of the receptor Mas in cardiovascular-related areas of the rat brain. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H1416-H1424.	1.5	134
365	Angiotensin-(1–7) and the renin–angiotensin system. Current Opinion in Nephrology and Hypertension, 2007, 16, 122-128.	1.0	136
366	Alterations in gene expression in the testis of angiotensin-(1–7)-receptor Mas-deficient mice. Regulatory Peptides, 2007, 138, 51-55.	1.9	31
367	A novel approach based on nanotechnology for investigating the chronic actions of short-lived peptides in specific sites of the brain. Regulatory Peptides, 2007, 138, 59-65.	1.9	4
368	The pregnancy-induced increase of plasma angiotensin-(1–7) is blunted in gestational diabetes. Regulatory Peptides, 2007, 141, 55-60.	1.9	39
369	Angiotensin-(3–7) pressor effect at the rostral ventrolateral medulla. Regulatory Peptides, 2007, 141, 168-174.	1.9	20
370	Evidence for a new angiotensin-(1–7) receptor subtype in the aorta of Sprague–Dawley rats. Peptides, 2007, 28, 702-707.	1.2	92
371	Evidence for a role of AT2 receptors at the CVLM in the cardiovascular changes induced by low-intensity physical activity in renovascular hypertensive rats. Peptides, 2007, 28, 1375-1382.	1.2	24
372	Study of angiotensin-(1–7) vasoactive peptide and its β-cyclodextrin inclusion complexes: Complete sequence-specific NMR assignments and structural studies. Peptides, 2007, 28, 2199-2210.	1.2	104
373	The renin–angiotensin system in a rat model of hepatic fibrosis: Evidence for a protective role of Angiotensin-(1–7). Journal of Hepatology, 2007, 46, 674-681.	1.8	101
374	lsoproterenol-induced impairment of heart function and remodeling are attenuated by the nonpeptide angiotensin-(1-7) analogue AVE 0991. Life Sciences, 2007, 81, 916-923.	2.0	55
375	Novel pharmaceutical composition of bradykinin potentiating penta peptide with β-cyclodextrin: Physical–chemical characterization and anti-hypertensive evaluation. International Journal of Pharmaceutics, 2007, 336, 90-98.	2.6	29
376	Cardiac angiotensin II type I and type II receptors are increased in rats submitted to experimental hypothyroidism. Journal of Physiology, 2007, 583, 213-223.	1.3	27
377	Identification of novel bradykinin-potentiating peptides (BPPs) in the venom gland of a rattlesnake allowed the evaluation of the structure–function relationship of BPPs. Biochemical Pharmacology, 2007, 74, 1350-1360.	2.0	32
378	Differential effect of losartan in female and male spontaneously hypertensive rats. Life Sciences, 2006, 78, 2280-2285.	2.0	14

#	Article	IF	CITATIONS
379	Effects of genetic deletion of angiotensin-(1–7) receptor Mas on cardiac function during ischemia/reperfusion in the isolated perfused mouse heart. Life Sciences, 2006, 80, 264-268.	2.0	48
380	Modulation of kinin B1 receptor expression by endogenous angiotensin II in hypertensive rats. Regulatory Peptides, 2006, 136, 92-97.	1.9	15
381	Renal function in transgenic rats expressing an angiotensin-(1–7)-producing fusion protein. Regulatory Peptides, 2006, 137, 128-133.	1.9	31
382	Tissue-specific modulation of angiotensin-converting enzyme (ACE) in hyperthyroidism. Peptides, 2006, 27, 2942-2949.	1.2	29
383	Hemorphin and hemorphin-like peptides isolated from dog pancreas and sheep brain are able to potentiate bradykinin activity in vivo. Peptides, 2006, 27, 2957-2966.	1.2	27
384	Chapter 2 Liposomes as a Tool for the Study of the Chronic Actions of Short-lived Peptides in Specific Sites of the Brain. Behavior Research Methods, 2006, 5, 25-40.	2.3	0
385	Pharmacological Effects of AVE 0991, a Nonpeptide Angiotensin-(1?7) Receptor Agonist. Cardiovascular Drug Reviews, 2006, 24, 239-246.	4.4	64
386	Self-assembly Characterization of the β-Cyclodextrin and Hydrochlorothiazide System: NMR, Phase Solubility, ITC and QELS. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2006, 55, 41-49.	1.6	33
387	Spironolactone and its Complexes with β-cyclodextrin: Modern NMR Characterization and Structural DFTB-SCC Calculations. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2006, 56, 293-302.	1.6	12
388	Circulating Renin Angiotensin System in Childhood Chronic Renal Failure: Marked Increase of Angiotensin-(1–7) in End-Stage Renal Disease. Pediatric Research, 2006, 60, 734-739.	1.1	53
389	Impairment of In Vitro and In Vivo Heart Function in Angiotensin-(1-7) Receptor Mas Knockout Mice. Hypertension, 2006, 47, 996-1002.	1.3	211
390	The Renin-Angiotensin System: Emerging Concepts. Current Hypertension Reviews, 2006, 2, 219-226.	0.5	3
391	The Therapeutic Potential of Angiotensin-(1-7) as a Novel Renin- Angiotensin System Mediator. Mini-Reviews in Medicinal Chemistry, 2006, 6, 603-609.	1.1	40
392	Baroreflex modulation by angiotensins at the rat rostral and caudal ventrolateral medulla. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 290, R1027-R1034.	0.9	39
393	DIMINISHED SYMPATHETIC ACTIVITY IN TRANSGENIC RATS WITH LOW BRAIN ANGIOTENSINOGEN. FASEB Journal, 2006, 20, .	0.2	0
394	The Endothelium-Dependent Vasodilator Effect of the Nonpeptide Ang(1-7) Mimic AVE 0991 Is Abolished in the Aorta of Mas-Knockout Mice. Journal of Cardiovascular Pharmacology, 2005, 46, 274-279.	0.8	113
395	Evidence for a functional cardiac interaction between losartan and angiotensin-(1-7) receptors revealed by orthostatic tilting test in rats. British Journal of Pharmacology, 2005, 144, 755-760.	2.7	12
396	Vasopressinergic hypothalamic neurons are recruited during the audiogenic seizure of WARs. Brain Research, 2005, 1038, 32-40.	1.1	8

#	Article	IF	CITATIONS
397	Cardiovascular effects of angiotensin II and angiotensin-(1–7) at the RVLM of trained normotensive rats. Brain Research, 2005, 1040, 121-128.	1.1	36
398	Blockade of Endogenous Angiotensin-(1–7) in the Hypothalamic Paraventricular Nucleus Reduces Renal Sympathetic Tone. Hypertension, 2005, 46, 341-348.	1.3	55
399	Short-Term Angiotensin(1-7) Receptor Mas Stimulation Improves Endothelial Function in Normotensive Rats. Hypertension, 2005, 46, 948-952.	1.3	98
400	Evidence for a Functional Interaction of the Angiotensin-(1–7) Receptor Mas With AT 1 and AT 2 Receptors in the Mouse Heart. Hypertension, 2005, 46, 937-942.	1.3	158
401	Altered renal response to acute volume expansion in transgenic rats harboring the human tissue kallikrein gene. Regulatory Peptides, 2005, 124, 127-135.	1.9	1
402	Chronic infusion of angiotensin-(1–7) reduces heart angiotensin II levels in rats. Regulatory Peptides, 2005, 125, 29-34.	1.9	47
403	Role of PGI2 and effects of ACE inhibition on the bradykinin potentiation by angiotensin-(1-7) in resistance vessels of SHR. Regulatory Peptides, 2005, 127, 183-189.	1.9	16
404	Autonomic control in rats with overactivity of tissue renin–angiotensin or kallikrein–kinin system. Regulatory Peptides, 2005, 129, 155-159.	1.9	7
405	Altered cardiovascular responses to chronic angiotensin II infusion in aged rats. Regulatory Peptides, 2005, 132, 67-73.	1.9	13
406	Angiotensin II inhibition of Ca2+ currents is independent of ATR1 angiotensin II receptor activation in rat adult vagal afferent neurons. Autonomic Neuroscience: Basic and Clinical, 2005, 117, 79-86.	1.4	5
407	Angiotensin-(1-7) and its receptor as a potential targets for new cardiovascular drugs. Expert Opinion on Investigational Drugs, 2005, 14, 1019-1031.	1.9	119
408	Nonpeptide AVE 0991 Is an Angiotensin-(1–7) Receptor Mas Agonist in the Mouse Kidney. Hypertension, 2004, 44, 490-496.	1.3	155
409	Site-specific microinjection of liposomes into the brain for local infusion of a short-lived peptide. Journal of Controlled Release, 2004, 95, 301-307.	4.8	21
410	Expression of an angiotensin-(1–7)-producing fusion protein produces cardioprotective effects in rats. Physiological Genomics, 2004, 17, 292-299.	1.0	169
411	Differential regulation of central vasopressin receptors in transgenic rats with low brain angiotensinogen. Regulatory Peptides, 2004, 119, 177-182.	1.9	19
412	The renin angiotensin system in childhood hypertension: Selective increase of angiotensin-(1-7) in essential hypertension. Journal of Pediatrics, 2004, 145, 93-98.	0.9	62
413	Angiotensin-(1–7) Antagonist A-779 Attenuates the Potentiation of Bradykinin by Captopril in Rats. Journal of Cardiovascular Pharmacology, 2004, 43, 685-691.	0.8	41
414	Angiotensin-(1–7) stimulates water transport in rat inner medullary collecting duct: evidence for involvement of vasopressin V2 receptors. Pflugers Archiv European Journal of Physiology, 2003, 447, 223-230.	1.3	65

#	Article	IF	CITATIONS
415	Role of periaqueductal gray on the cardiovascular response evoked by disinhibition of the dorsomedial hypothalamus. Brain Research, 2003, 984, 206-214.	1.1	52
416	Angiotensin-(1–7): A Novel Peptide in the Ovary. Endocrinology, 2003, 144, 1942-1948.	1.4	53
417	Angiotensin-(1–7) is an endogenous ligand for the G protein-coupled receptor Mas. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8258-8263.	3.3	1,555
418	Characterization of a New Selective Antagonist for Angiotensin-(1–7), d -Pro 7 -Angiotensin-(1–7). Hypertension, 2003, 41, 737-743.	1.3	74
419	Measurements and modeling of water transport and osmoregulation in a single kidney cell using optical tweezers and videomicroscopy. Physical Review E, 2003, 68, 041906.	0.8	31
420	Systemic and regional hemodynamic effects of angiotensin-(1–7) in rats. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 284, H1985-H1994.	1.5	164
421	Differential effects of angiotensin II and angiotensin-(1-7) at the nucleus tractus solitarii of transgenic rats with low brain angiotensinogen. Journal of Hypertension, 2002, 20, 919-925.	0.3	25
422	Effects of angiotensins on day-night fluctuations and stress-induced changes in blood pressure. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 282, R1663-R1671.	0.9	43
423	Effect of angiotensin-(1–7) on jejunal absorption of water in rats. Peptides, 2002, 23, 51-56.	1.2	8
424	Vasodilator effect of angiotensin-(1–7) in mature and sponge-induced neovasculature. Regulatory Peptides, 2002, 107, 105-113.	1.9	17
425	Hypotensive effect of ANG II and ANG-(1–7) at the caudal ventrolateral medulla involves different mechanisms. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 283, R1187-R1195.	0.9	36
426	Angiotensin-(1-7) is involved in the endothelium-dependent modulation of phenylephrine-induced contraction in the aorta of mRen-2 transgenic rats. British Journal of Pharmacology, 2002, 135, 1743-1748.	2.7	35
427	Alterations of the renin-angiotensin system at the RVLM of transgenic rats with low brain angiotensinogen. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001, 280, R428-R433.	0.9	27
428	Mechanisms of angiotensin-(1–7)-induced inhibition of angiogenesis. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001, 280, R994-R1000.	0.9	67
429	Long-Lasting Cardiovascular Effects of Liposome-Entrapped Angiotensin-(1-7) at the Rostral Ventrolateral Medulla. Hypertension, 2001, 38, 1266-1271.	1.3	42
430	Potentiation of Bradykinin by Angiotensin-(1-7) on Arterioles of Spontaneously Hypertensive Rats Studied In Vivo. Hypertension, 2001, 37, 703-709.	1.3	113
431	Interactions Between Angiotensin-(1-7), Kinins, and Angiotensin II in Kidney and Blood Vessels. Hypertension, 2001, 38, 660-664.	1.3	79
432	Baroreflex Improvement in SHR After ACE Inhibition Involves Angiotensin-(1-7). Hypertension, 2001, 37, 1309-1314.	1.3	47

#	Article	IF	CITATIONS
433	Angiotensin-(1-7): Cardioprotective Effect in Myocardial Ischemia/Reperfusion. Hypertension, 2001, 38, 665-668.	1.3	220
434	Modulation of the baroreflex control of heart rate by angiotensin-(1–7) at the nucleus tractus solitarii of normotensive and spontaneously hypertensive rats. Journal of Hypertension, 2000, 18, 1841-1848.	0.3	73
435	Angiotensin-(1-7) potentiates the coronary vasodilatatory effect of bradykinin in the isolated rat heart. Brazilian Journal of Medical and Biological Research, 2000, 33, 709-713.	0.7	79
436	Standardization of a fluorimetric assay for the determination of tissue angiotensin-converting enzyme activity in rats. Brazilian Journal of Medical and Biological Research, 2000, 33, 755-764.	0.7	52
437	Angiotensin peptides acting at rostral ventrolateral medulla contribute to hypertension of TGR(mREN2)27 rats. Physiological Genomics, 2000, 2, 137-142.	1.0	60
438	Angiotensin-(1–7): an update. Regulatory Peptides, 2000, 91, 45-62.	1.9	353
439	Angiotensin-(1–7) regulates the levels of angiotensin II receptor subtype AT1 mRNA differentially in a strain-specific fashion. Regulatory Peptides, 2000, 95, 99-107.	1.9	15
440	Differential Effects of Angiotensin II and Angiotensin-(1-7) at the Nucleus Tractus Solitarii of Transgenic Rats with Low Brain Angiotensinogen. Hypertension, 2000, 36, 700-700.	1.3	0
441	Alterations of Central Vasopressinergic System in Transgenic Rats with Low Brain Angiotensinogen. Hypertension, 2000, 36, 727-727.	1.3	0
442	Effect of chronic angiotensin converting enzyme inhibition on angiotensin I and bradykinin metabolism in rats. American Journal of Hypertension, 1999, 12, 1021-1029.	1.0	31
443	Potentiation of the hypotensive effect of bradykinin by angiotensin-(1–7)-related peptides. Peptides, 1999, 20, 493-500.	1.2	50
444	Synergistic effect of angiotensin-(1–7) on bradykinin arteriolar dilation in vivo. Peptides, 1999, 20, 1195-1201.	1.2	109
445	Opposing actions of angiotensins on angiogenesis. Life Sciences, 1999, 66, 67-76.	2.0	85
446	Cardiovascular effects produced by nitric oxiderelated drugs in the caudal ventrolateral medulla. NeuroReport, 1999, 10, 731-735.	0.6	11
447	Haemorrhage increases the pressor effect of angiotensin-(1–7) but not of angiotensin II at the rat rostral ventrolateral medulla. Journal of Hypertension, 1999, 17, 1145-1152.	0.3	12
448	Diuresis and natriuresis produced by long term administration of a selective Angiotensin-(1–7) antagonist in normotensive and hypertensive rats. Regulatory Peptides, 1998, 74, 177-184.	1.9	50
449	Interaction of bradykinin and angiotensin-(1–7) in the central modulation of the baroreflex control of the heart rate. Journal of Hypertension, 1998, 16, 1797-1804.	0.3	34
450	Effect of selective angiotensin antagonists on the antidiuresis produced by angiotensin-(1-7) in water-loaded rats. Brazilian Journal of Medical and Biological Research, 1998, 31, 1221-1227.	0.7	34

#	Article	IF	CITATIONS
451	A comparative analysis of preprocessing techniques of cardiac event series for the study of heart rhythm variability using simulated signals. Brazilian Journal of Medical and Biological Research, 1998, 31, 421-430.	0.7	14
452	Renal actions of angiotensin-(1-7). Brazilian Journal of Medical and Biological Research, 1997, 30, 503-513.	0.7	33
453	Effect of angiotensin-(1-7) on reperfusion arrhythmias in isolated rat hearts. Brazilian Journal of Medical and Biological Research, 1997, 30, 801-809.	0.7	58
454	Cardiovascular effects produced by microinjection of angiotensins and angiotensin antagonists into the ventrolateral medulla of freely moving rats. Brain Research, 1997, 750, 305-310.	1.1	91
455	Potentiation of the Hypotensive Effect of Bradykinin by Short-term Infusion of Angiotensin-(1-7) in Normotensive and Hypertensive Rats. Hypertension, 1997, 30, 542-548.	1.3	65
456	Role of Angiotensin-(1-7) in the Modulation of the Baroreflex in Renovascular Hypertensive Rats. Hypertension, 1997, 30, 549-556.	1.3	83
457	Cardiovascular effects produced by bradykinin microinjection into the nucleus tractus solitarii of anesthetized rats. Brain Research, 1996, 720, 183-190.	1.1	21
458	Effect of acute volume expansion associated with salt load on the profile of plasma angiotensins in rats. Immunopharmacology, 1996, 33, 143-145.	2.0	5
459	Pressor action of angiotensin I at the ventrolateral medulla: effect of selective angiotensin blockade. Immunopharmacology, 1996, 33, 305-307.	2.0	9
460	Evidence for a Physiological Role of Angiotensin-(1-7) in the Control of Hydroelectrolyte Balance. Hypertension, 1996, 27, 875-884.	1.3	87
461	Changes in the Baroreflex Control of Heart Rate Produced by Central Infusion of Selective Angiotensin Antagonists in Hypertensive Rats. Hypertension, 1996, 27, 1284-1290.	1.3	77
462	Metabolism of angiotensin I in isolated rat hearts. Biochemical Pharmacology, 1995, 50, 1451-1459.	2.0	46
463	Angiotensin-(1-7) Potentiates the Hypotensive Effect of Bradykinin in Conscious Rats. Hypertension, 1995, 26, 1154-1159.	1.3	111
464	Evidence that angiotensin-(1–7) plays a role in the central control of blood pressure at the ventro-lateral medulla acting through specific receptors. Brain Research, 1994, 665, 175-180.	1.1	141
465	Plasma angiotensin(1–7) immunoreactivity is increased by salt load, water deprivation, and hemorrhage. Peptides, 1994, 15, 723-729.	1.2	77
466	Characterization of a new angiotensin antagonist selective for angiotensin-(1–7): Evidence that the actions of angiotensin-(1–7) are mediated by specific angiotensin receptors. Brain Research Bulletin, 1994, 35, 293-298.	1.4	272
467	Central and peripheral actions of angiotensin-(1-7). Brazilian Journal of Medical and Biological Research, 1994, 27, 1033-47.	0.7	8
468	Cardiovascular effects produced by micro-injection of angiotensin-(1–7) on vasopressor and vasodepressor sites of the ventrolateral medulla. Brain Research, 1993, 613, 321-325.	1.1	69

#	Article	IF	CITATIONS
469	Production of angiotensin-(1-7) by human vascular endothelium Hypertension, 1992, 19, II56-II56.	1.3	104
470	Centrally infused bradykinin increases baroreceptor reflex sensitivity Hypertension, 1992, 19, II176-II176.	1.3	20
471	Differential baroreceptor reflex modulation by centrally infused angiotensin peptides. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1992, 263, R89-R94.	0.9	100
472	Angiotensin-(1-7) is a potent antidiuretic peptide in rats. Brazilian Journal of Medical and Biological Research, 1992, 25, 651-4.	0.7	8
473	Evidence that prolyl endopeptidase participates in the processing of brain angiotensin. Journal of Hypertension, 1991, 9, 631-638.	0.3	95
474	Pathways of angiotensin formation and function in the brain Hypertension, 1990, 15, 113-113.	1.3	67
475	The renin-angiotensin system during acute myocardial ischemia in dogs Hypertension, 1990, 15, I121-I121.	1.3	57
476	Cardiovascular effects of angiotensin-(1-7) injected into the dorsal medulla of rats. American Journal of Physiology - Heart and Circulatory Physiology, 1989, 257, H324-H329.	1.5	102
477	Changes in Plasma Ace Activity During the Development and Reversal of One-Kidney, One Clip Hypertension in Rats. Clinical and Experimental Hypertension, 1989, 11, 189-203.	0.3	1
478	Immunocytochemical localization of angiotensin-(1–7) in the rat forebrain. Peptides, 1988, 9, 1395-1401.	1.2	80
479	A Hypothesis Regarding the Function of Angiotensin Peptides in the Brain. Clinical and Experimental Hypertension, 1988, 10, 107-121.	0.3	26
480	Site of entry of kininase II into renal tubular fluid Hypertension, 1988, 11, 166-8.	1.3	4
481	Converting enzyme activity and angiotensin metabolism in the dog brainstem Hypertension, 1988, 11, I153-7.	1.3	129
482	The ventrolateral medulla. A new site of action of the renin-angiotensin system Hypertension, 1988, 11, 1163-6.	1.3	71
483	Release of vasopressin from the rat hypothalamo-neurohypophysial system by angiotensin-(1-7) heptapeptide Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 4095-4098.	3.3	268
484	Bradykinin potentiating peptides isolated from α-casein tryptic hydrolysate. Biochemical Pharmacology, 1987, 36, 182-184.	2.0	15
485	An improved fluorometric assay of rat serum and plasma converting enzyme Hypertension, 1985, 7, 244-252.	1.3	137
486	Comparative study of the action of purified scorpion toxin (tityustoxin) on the submandibular and parotid glands of the rat. Toxicon, 1981, 19, 255-261.	0.8	15

#	Article	IF	CITATIONS
487	Potentiation of bradykinin by a factor present in the salivary gland of the rat. Advances in Experimental Medicine and Biology, 1979, 120B, 581-7.	0.8	0
488	Effect of scorpion toxin (tityustoxin, TsTx) on the salivary gland of the rat, in vivo and in vitro. Agents and Actions, 1978, 8, 119-124.	0.7	13
489	Angiotensins. , 0, , 65-100.		0