
Timothy J Donohue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1791142/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Using Genome Scale Mutant Libraries to Identify Essential Genes. Methods in Molecular Biology, 2022, 2377, 215-236.	0.4	0
2	Integrating lignin depolymerization with microbial funneling processes using agronomically relevant feedstocks. Green Chemistry, 2022, 24, 2795-2811.	4.6	20
3	Metagenome-Assembled Genomes from a Microbiome Converting Xylose to Medium-Chain Carboxylic Acids. Microbiology Resource Announcements, 2022, 11, e0115121.	0.3	2
4	Editorial overview: Microbial activities powering society. Current Opinion in Microbiology, 2022, 67, 102144.	2.3	0
5	Correction for Beach et al., "Exploring the Meta-regulon of the CRP/FNR Family of Global Transcriptional Regulators in a Partial-Nitritation Anammox Microbiome― MSystems, 2022, , e0021322.	1.7	0
6	iNovo479: Metabolic Modeling Provides a Roadmap to Optimize Bioproduct Yield from Deconstructed Lignin Aromatics by Novosphingobium aromaticivorans. Metabolites, 2022, 12, 366.	1.3	3
7	Metagenomes from 25 Low-Abundance Microbes in a Partial Nitritation Anammox Microbiome. Microbiology Resource Announcements, 2022, 11, e0021222.	0.3	2
8	The essential Rhodobacter sphaeroides CenKR two-component system regulates cell division and envelope biosynthesis. PLoS Genetics, 2022, 18, e1010270.	1.5	7
9	Metagenomes and Metagenome-Assembled Genomes from Microbial Communities Fermenting Ultrafiltered Milk Permeate. Microbiology Resource Announcements, 2022, 11, .	0.3	2
10	A High-Throughput Method for Identifying Novel Genes That Influence Metabolic Pathways Reveals New Iron and Heme Regulation in Pseudomonas aeruginosa. MSystems, 2021, 6, .	1.7	11
11	Kinetic modeling of anaerobic degradation of plant-derived aromatic mixtures by Rhodopseudomonas palustris. Biodegradation, 2021, 32, 179-192.	1.5	4
12	Redundancy in Aromatic <i>O</i> -Demethylation and Ring-Opening Reactions in <i>Novosphingobium aromaticivorans</i> and Their Impact in the Metabolism of Plant-Derived Phenolics. Applied and Environmental Microbiology, 2021, 87, .	1.4	16
13	Delila-PY, a Pipeline for Utilizing the Delila Suite of Software to Identify Potential DNA Binding Motifs. Microbiology Resource Announcements, 2021, 10, .	0.3	1
14	Form and function of the condensed bacterial nucleoid studied by cryo-ET. Microscopy and Microanalysis, 2021, 27, 3020-3022.	0.2	0
15	Diverse Profile of Fermentation Byproducts From Thin Stillage. Frontiers in Bioengineering and Biotechnology, 2021, 9, 695306.	2.0	16
16	Promoter Architecture Differences among <i>Alphaproteobacteria</i> and Other Bacterial Taxa. MSystems, 2021, 6, e0052621.	1.7	6
17	Mixed Acid Fermentation of Carbohydrate-Rich Dairy Manure Hydrolysate. Frontiers in Bioengineering and Biotechnology, 2021, 9, 724304.	2.0	11
18	Exploring the Meta-regulon of the CRP/FNR Family of Global Transcriptional Regulators in a Partial-Nitritation Anammox Microbiome. MSystems, 2021, 6, e0090621.	1.7	3

#	Article	IF	CITATIONS
19	Aromatic Dimer Dehydrogenases from <i>Novosphingobium aromaticivorans</i> Reduce Monoaromatic Diketones. Applied and Environmental Microbiology, 2021, 87, e0174221.	1.4	5
20	Genome-Wide Identification of Transcription Start Sites in Two <i>Alphaproteobacteria</i> , Rhodobacter sphaeroides 2.4.1 and Novosphingobium aromaticivorans DSM 12444. Microbiology Resource Announcements, 2020, 9, .	0.3	8
21	Diagnosing and Predicting Mixed-Culture Fermentations with Unicellular and Guild-Based Metabolic Models. MSystems, 2020, 5, .	1.7	20
22	COnTORT: COmprehensive Transcriptomic ORganizational Tool for Simultaneously Retrieving and Organizing Numerous Gene Expression Data Sets from the NCBI Gene Expression Omnibus Database. Microbiology Resource Announcements, 2020, 9, .	0.3	3
23	Deletion of the ntrYX Two Component System in Rhodobacter sphaeroides Causes the Generation of Diverse Extracellular Membrane Structures. Microscopy and Microanalysis, 2020, 26, 2522-2523.	0.2	1
24	A majority of <i>Rhodobacter sphaeroides</i> promoters lack a crucial RNA polymerase recognition feature, enabling coordinated transcription activation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29658-29668.	3.3	14
25	The NtrYX Two-Component System Regulates the Bacterial Cell Envelope. MBio, 2020, 11, .	1.8	22
26	Anaerobic Degradation of Syringic Acid by an Adapted Strain of Rhodopseudomonas palustris. Applied and Environmental Microbiology, 2020, 86, .	1.4	9
27	A bacterial biosynthetic pathway for methylated furan fatty acids. Journal of Biological Chemistry, 2020, 295, 9786-9801.	1.6	18
28	Medium-Chain Fatty Acid Synthesis by " <i>Candidatus</i> Weimeria bifida―gen. nov., sp. nov., and " <i>Candidatus</i> Pseudoramibacter fermentans―sp. nov. Applied and Environmental Microbiology, 2020, 86, .	1.4	42
29	Rewiring the specificity of extracytoplasmic function sigma factors. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33496-33506.	3.3	13
30	Discovery of the extracytoplasmic function $\ddot{l}f$ factors. Molecular Microbiology, 2019, 112, 348-355.	1.2	18
31	Shedding light on a Group IV (ECF11) alternative Ï f factor. Molecular Microbiology, 2019, 112, 374-384.	1.2	10
32	Funneling aromatic products of chemically depolymerized lignin into 2-pyrone-4-6-dicarboxylic acid with <i>Novosphingobium aromaticivorans</i> . Green Chemistry, 2019, 21, 1340-1350.	4.6	79
33	A heterodimeric glutathione S-transferase that stereospecifically breaks lignin's β(R)-aryl ether bond reveals the diversity of bacterial β-etherases. Journal of Biological Chemistry, 2019, 294, 1877-1890.	1.6	32
34	<i>In Vitro</i> Enzymatic Depolymerization of Lignin with Release of Syringyl, Guaiacyl, and Tricin Units. Applied and Environmental Microbiology, 2018, 84, .	1.4	41
35	Metatranscriptomic and Thermodynamic Insights into Medium-Chain Fatty Acid Production Using an Anaerobic Microbiome. MSystems, 2018, 3, .	1.7	69
36	Increasing the economic value of lignocellulosic stillage through medium-chain fatty acid production. Biotechnology for Biofuels, 2018, 11, 200.	6.2	99

#	Article	IF	CITATIONS
37	Novosphingobium aromaticivorans uses a Nu-class glutathione S-transferase as a glutathione lyase in breaking the β-aryl ether bond of lignin. Journal of Biological Chemistry, 2018, 293, 4955-4968.	1.6	48
38	Mutations That Alter the Bacterial Cell Envelope Increase Lipid Production. MBio, 2017, 8, .	1.8	10
39	Biochemical transformation of lignin for deriving valued commodities from lignocellulose. Current Opinion in Biotechnology, 2017, 45, 120-126.	3.3	95
40	Combining Genome-Scale Experimental and Computational Methods To Identify Essential Genes in Rhodobacter sphaeroides. MSystems, 2017, 2, .	1.7	43
41	Different Functions of Phylogenetically Distinct Bacterial Complex I Isozymes. Journal of Bacteriology, 2016, 198, 1268-1280.	1.0	16
42	Toward a Predictive Understanding of Earth's Microbiomes to Address 21st Century Challenges. MBio, 2016, 7, .	1.8	124
43	Structural and Biochemical Characterization of the Early and Late Enzymes in the Lignin β-Aryl Ether Cleavage Pathway from Sphingobium sp. SYK-6. Journal of Biological Chemistry, 2016, 291, 10228-10238.	1.6	44
44	Structural Basis of Stereospecificity in the Bacterial Enzymatic Cleavage of β-Aryl Ether Bonds in Lignin. Journal of Biological Chemistry, 2016, 291, 5234-5246.	1.6	40
45	Electron Partitioning in Anoxic Phototrophic Bacteria. Advances in Photosynthesis and Respiration, 2016, , 679-700.	1.0	Ο
46	CceR and AkgR Regulate Central Carbon and Energy Metabolism in Alphaproteobacteria. MBio, 2015, 6, .	1.8	12
47	Metabolism of Multiple Aromatic Compounds in Corn Stover Hydrolysate by <i>Rhodopseudomonas palustris</i> . Environmental Science & amp; Technology, 2015, 49, 8914-8922.	4.6	51
48	An Integrated Approach to Reconstructing Genome-Scale Transcriptional Regulatory Networks. PLoS Computational Biology, 2015, 11, e1004103.	1.5	23
49	Oxygen-Dependent Regulation of Bacterial Lipid Production. Journal of Bacteriology, 2015, 197, 1649-1658.	1.0	11
50	A Cardiolipin-Deficient Mutant of Rhodobacter sphaeroides Has an Altered Cell Shape and Is Impaired in Biofilm Formation. Journal of Bacteriology, 2015, 197, 3446-3455.	1.0	26
51	Phylogenomic Analysis and Predicted Physiological Role of the Proton-Translocating NADH:Quinone Oxidoreductase (Complex I) Across Bacteria. MBio, 2015, 6, .	1.8	44
52	Quantifying the effects of light intensity on bioproduction and maintenance energy during photosynthetic growth of Rhodobacter sphaeroides. Photosynthesis Research, 2015, 123, 167-182.	1.6	15
53	Genomic Encyclopedia of Bacteria and Archaea: Sequencing a Myriad of Type Strains. PLoS Biology, 2014, 12, e1001920.	2.6	190
54	Global Analysis of Photosynthesis Transcriptional Regulatory Networks. PLoS Genetics, 2014, 10, e1004837.	1.5	31

#	Article	IF	CITATIONS
55	A Rhodobacter sphaeroides Protein Mechanistically Similar to Escherichia coli DksA Regulates Photosynthetic Growth. MBio, 2014, 5, e01105-14.	1.8	16
56	A Group of Sequence-Related Sphingomonad Enzymes Catalyzes Cleavage of β-Aryl Ether Linkages in Lignin β-Guaiacyl and β-Syringyl Ether Dimers. Environmental Science & Technology, 2014, 48, 12454-12463.	4.6	80
57	Synthesis and scavenging role of furan fatty acids. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3450-7.	3.3	49
58	Stereochemical Features of Glutathione-dependent Enzymes in the Sphingobium sp. Strain SYK-6 β-Aryl Etherase Pathway. Journal of Biological Chemistry, 2014, 289, 8656-8667.	1.6	58
59	Global Responses of Bacteria to Oxygen Deprivation. , 2014, , 175-189.		3
60	Global insights into energetic and metabolic networks in Rhodobacter sphaeroides. BMC Systems Biology, 2013, 7, 89.	3.0	46
61	Chemistry and combustion of fit-for-purpose biofuels. Current Opinion in Chemical Biology, 2013, 17, 522-528.	2.8	5
62	Proteins Needed to Activate a Transcriptional Response to the Reactive Oxygen Species Singlet Oxygen. MBio, 2013, 4, e00541-12.	1.8	24
63	Benzoyl Coenzyme A Pathway-Mediated Metabolism of <i>meta</i> -Hydroxy-Aromatic Acids in Rhodopseudomonas palustris. Journal of Bacteriology, 2013, 195, 4112-4120.	1.0	9
64	Interview with Professor Timothy Donohue. Biofuels, 2013, 4, 255-258.	1.4	0
65	Convergence of the Transcriptional Responses to Heat Shock and Singlet Oxygen Stresses. PLoS Genetics, 2012, 8, e1002929.	1.5	42
66	Signal Correlations in Ecological Niches Can Shape the Organization and Evolution of Bacterial Gene Regulatory Networks. Advances in Microbial Physiology, 2012, 61, 1-36.	1.0	6
67	Revised Sequence and Annotation of the Rhodobacter sphaeroides 2.4.1 Genome. Journal of Bacteriology, 2012, 194, 7016-7017.	1.0	36
68	Maximizing reductant flow into microbial H2 production. Current Opinion in Biotechnology, 2012, 23, 382-389.	3.3	20
69	Extracytoplasmic function σ factors of the widely distributed group ECF41 contain a fused regulatory domain. MicrobiologyOpen, 2012, 1, 194-213.	1.2	40
70	Conservation of thiolâ€oxidative stress responses regulated by SigR orthologues in actinomycetes. Molecular Microbiology, 2012, 85, 326-344.	1.2	65
71	Features of Rhodobacter sphaeroides ChrR Required for Stimuli to Promote the Dissociation of ÏfE/ChrR Complexes. Journal of Molecular Biology, 2011, 407, 477-491.	2.0	21
72	iRsp1095: A genome-scale reconstruction of the Rhodobacter sphaeroides metabolic network. BMC Systems Biology, 2011, 5, 116.	3.0	68

#	Article	IF	CITATIONS
73	Optimizing ethanol production selectivity. Mathematical and Computer Modelling, 2011, 53, 1363-1373.	2.0	4
74	Pathways Involved in Reductant Distribution during Photobiological H ₂ Production by Rhodobacter sphaeroides. Applied and Environmental Microbiology, 2011, 77, 7425-7429.	1.4	41
75	Great Lakes Bioenergy Research Center. Industrial Biotechnology, 2011, 7, 255-256.	0.5	0
76	Q&A roundtable on US bioenergy research. Industrial Biotechnology, 2011, 7, 264-266.	0.5	1
77	Electron Partitioning During Light- and Nutrient-Powered Hydrogen Production by Rhodobacter sphaeroides. Bioenergy Research, 2010, 3, 55-66.	2.2	41
78	The US Department of Energy Great Lakes Bioenergy Research Center: Midwestern Biomass as a Resource for Renewable Fuels. Bioenergy Research, 2010, 3, 3-5.	2.2	11
79	An Insect Herbivore Microbiome with High Plant Biomass-Degrading Capacity. PLoS Genetics, 2010, 6, e1001129.	1.5	213
80	chipD: a web tool to design oligonucleotide probes for high-density tiling arrays. Nucleic Acids Research, 2010, 38, W321-W325.	6.5	23
81	H-NOX–mediated nitric oxide sensing modulates symbiotic colonization by <i>Vibrio fischeri</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8375-8380.	3.3	100
82	Reconstruction of the Core and Extended Regulons of Global Transcription Factors. PLoS Genetics, 2010, 6, e1001027.	1.5	62
83	Targeted σ factor turnover inserts negative control into a positive feedback loop. Molecular Microbiology, 2009, 73, 747-750.	1.2	6
84	Bacterial responses to photo-oxidative stress. Nature Reviews Microbiology, 2009, 7, 856-863.	13.6	183
85	Purple Bacterial Genomics. Advances in Photosynthesis and Respiration, 2009, , 691-706.	1.0	2
86	Development of a solar-powered microbial fuel cell. Journal of Applied Microbiology, 2008, 104, 640-650.	1.4	100
87	Organization and Evolution of the Biological Response to Singlet Oxygen Stress. Journal of Molecular Biology, 2008, 383, 713-730.	2.0	65
88	A Computational Strategy to Analyze Label-Free Temporal Bottom-Up Proteomics Data. Journal of Proteome Research, 2008, 7, 2595-2604.	1.8	29
89	ldentification of proteins involved in formaldehyde metabolism by Rhodobacter sphaeroides. Microbiology (United Kingdom), 2008, 154, 296-305.	0.7	62
90	Hierarchical Regulation of Photosynthesis Gene Expression by the Oxygen-Responsive PrrBA and AppA-PpsR Systems of Rhodobacter sphaeroides. Journal of Bacteriology, 2008, 190, 8106-8114.	1.0	20

#	Article	IF	CITATIONS
91	Microbes in the Energy Grid. Science, 2008, 320, 985-985.	6.0	10
92	Proteomic Characterization of the Rhodobacter sphaeroides 2.4.1 Photosynthetic Membrane: Identification of New Proteins. Journal of Bacteriology, 2007, 189, 7464-7474.	1.0	33
93	A Conserved Structural Module Regulates Transcriptional Responses to Diverse Stress Signals in Bacteria. Molecular Cell, 2007, 27, 793-805.	4.5	136
94	Application of the Accurate Mass and Time Tag Approach to the Proteome Analysis of Sub-cellular Fractions Obtained fromRhodobactersphaeroides2.4.1. Aerobic and Photosynthetic Cell Cultures. Journal of Proteome Research, 2006, 5, 1940-1947.	1.8	43
95	Activation of the Global Gene Regulator PrrA (RegA) fromRhodobacter sphaeroidesâ€. Biochemistry, 2006, 45, 7872-7881.	1.2	22
96	Development of the bacterial photosynthetic apparatus. Current Opinion in Microbiology, 2006, 9, 625-631.	2.3	25
97	Comparison of aerobic and photosynthetic Rhodobacter sphaeroides 2.4.1 proteomes. Journal of Microbiological Methods, 2006, 67, 424-436.	0.7	39
98	Microorganisms and clean energy. Nature Reviews Microbiology, 2006, 4, 800-800.	13.6	24
99	Activity of Rhodobacter sphaeroides RpoH II , a Second Member of the Heat Shock Sigma Factor Family. Journal of Bacteriology, 2006, 188, 5712-5721.	1.0	38
100	In Vitro and In Vivo Analysis of the Role of PrrA in Rhodobacter sphaeroides 2.4.1 hemA Gene Expression. Journal of Bacteriology, 2006, 188, 3208-3218.	1.0	22
101	Mutational analysis of the C-terminal domain of the Rhodobacter sphaeroides response regulator PrrA. Microbiology (United Kingdom), 2005, 151, 4103-4110.	0.7	10
102	A transcriptional response to singlet oxygen, a toxic byproduct of photosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6502-6507.	3.3	143
103	Identification of Genes Required for Recycling Reducing Power during Photosynthetic Growth. Journal of Bacteriology, 2005, 187, 5249-5258.	1.0	25
104	Policy proposal for publication of papers with data sets from genome-wide studies. International Journal of Systematic and Evolutionary Microbiology, 2004, 54, 1915-1915.	0.8	0
105	The role of dor gene products in controlling the P2 promoter of the cytochrome c 2 gene, cycA, in Rhodobacter sphaeroides. Microbiology (United Kingdom), 2004, 150, 1893-1899.	0.7	5
106	Positive and Negative Transcriptional Regulators of Glutathione-Dependent Formaldehyde Metabolism. Journal of Bacteriology, 2004, 186, 7914-7925.	1.0	10
107	Policy proposal for publication of papers with data sets from genome-wide studies. Microbiology (United Kingdom), 2004, 150, 3521-3522.	0.7	1
108	Differences in two Pseudomonas aeruginosa cbb3 cytochrome oxidases. Molecular Microbiology, 2004, 51, 1193-1203.	1.2	75

#	Article	IF	CITATIONS
109	Interactions Between the Rhodobacter sphaeroides ECF Sigma Factor, Ï f E , and its Anti-sigma Factor, ChrR. Journal of Molecular Biology, 2004, 341, 345-360.	2.0	56
110	The role of zinc in function of the Rhodobacter sphaeroides anti-sigma factor ChrR. Journal of Inorganic Biochemistry, 2003, 96, 77.	1.5	0
111	Purification of Rhodobacter sphaeroides RNA Polymerase and Its Sigma Factors. Methods in Enzymology, 2003, 370, 54-65.	0.4	19
112	Whole-Genome Shotgun Optical Mapping of Rhodobacter sphaeroides strain 2.4.1 and Its Use for Whole-Genome Shotgun Sequence Assembly. Genome Research, 2003, 13, 2142-2151.	2.4	49
113	Features of Rhodobacter sphaeroides CcmFH. Journal of Bacteriology, 2003, 185, 422-431.	1.0	13
114	Link between the Membrane-Bound Pyridine Nucleotide Transhydrogenase and Glutathione-Dependent Processes in Rhodobacter sphaeroides. Journal of Bacteriology, 2002, 184, 400-409.	1.0	38
115	Transcriptional Activation of the Rhodobacter sphaeroides Cytochrome c2 Gene P2 Promoter by the Response Regulator PrrA. Journal of Bacteriology, 2002, 184, 390-399.	1.0	55
116	Pseudomonas aeruginosa RoxR, a response regulator related to Rhodobacter sphaeroides PrrA, activates expression of the cyanide-insensitive terminal oxidase. Molecular Microbiology, 2002, 45, 755-768.	1.2	63
117	Characterization of Rhodobacter sphaeroides Cytochrome c2 Proteins with Altered Heme Attachment Sites. Archives of Biochemistry and Biophysics, 2001, 389, 234-244.	1.4	17
118	The importance of zinc-binding to the function of Rhodobacter sphaeroides ChrR as an anti-sigma factor. Journal of Molecular Biology, 2001, 313, 485-499.	2.0	62
119	The home stretch, a first analysis of the nearly completed genome of Rhodobacter sphaeroides 2.4.1. Photosynthesis Research, 2001, 70, 19-41.	1.6	129
120	Roles for the Rhodobacter sphaeroides CcmA and CcmG Proteins. Journal of Bacteriology, 2001, 183, 4643-4647.	1.0	5
121	Transcription Activation by CooA, the CO-sensing Factor fromRhodospirillum rubrum. Journal of Biological Chemistry, 1999, 274, 10840-10845.	1.6	37
122	Activation of the cycA P2 promoter for the Rhodobacter sphaeroides cytochrome c2 gene by the photosynthesis response regulator. Molecular Microbiology, 1999, 34, 822-835.	1.2	40
123	The Rhodobacter sphaeroides ECF sigma factor, σE, and the target promoters cycA P3 and rpoE P1. Journal of Molecular Biology, 1999, 294, 307-320.	2.0	45
124	Function of a Glutathione-Dependent Formaldehyde Dehydrogenase inRhodobacter sphaeroidesFormaldehyde Oxidation and Assimilationâ€. Biochemistry, 1998, 37, 530-537.	1.2	50
125	Pathways for transcriptional activation of a glutathione-dependent formaldehyde dehydrogenase gene 1 1Edited by M. Gottesman. Journal of Molecular Biology, 1998, 280, 775-784.	2.0	35
126	Transcription of the Rhodobacter sphaeroides cycA P1 Promoter by Alternate RNA Polymerase Holoenzymes. Journal of Bacteriology, 1998, 180, 1-9.	1.0	19

#	Article	IF	CITATIONS
127	Metabolic Roles of a Rhodobacter sphaeroides Member of the Ï, 32 Family. Journal of Bacteriology, 1998, 180, 10-19.	1.0	40
128	Transcriptional control of several aerobically induced cytochrome structural genes in Rhodobacter sphaeroides. Microbiology (United Kingdom), 1997, 143, 3101-3110.	0.7	25
129	Eubacterial signal transduction by ligands of the mammalian peripheral benzodiazepine receptor complex. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 4821-4822.	3.3	4
130	Molecular phylogeny of Archaea from soil. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 277-282.	3.3	333
131	Reactions of Isocytochrome c2 in the Photosynthetic Electron Transfer Chain of Rhodobacter sphaeroides. Biochemistry, 1997, 36, 903-911.	1.2	14
132	Characterization of a glutathione-dependent formaldehyde dehydrogenase from Rhodobacter sphaeroides. Journal of Bacteriology, 1996, 178, 1386-1393.	1.0	46
133	Organization and expression of the Rhodobacter sphaeroides cycFG operon. Journal of Bacteriology, 1995, 177, 4311-4320.	1.0	11
134	Cytochromes, Iron-Sulfur, and Copper Proteins Mediating Electron Transfer from the Cyt bc1 Complex to Photosynthetic Reaction Center Complexes. , 1995, , 725-745.		14
135	Transcription properties of RNA polymerase holoenzymes isolated from the purple nonsulfur bacterium Rhodobacter sphaeroides. Journal of Bacteriology, 1993, 175, 7629-7638.	1.0	34
136	Genetic Analysis of Photosynthetic Membrane Biogenesis in Rhodobacter sphaeroides. , 1993, , 101-131.		4
137	Regulation of a cytochrome c2 isoform in wild-type and cytochrome c2 mutant strains of Rhodobacter sphaeroides. Archives of Biochemistry and Biophysics, 1992, 292, 576-582.	1.4	15
138	δ-Aminolevulinate couples cycA transcription to changes in heme availability in Rhodobacter sphaeroides. Journal of Molecular Biology, 1992, 226, 101-115.	2.0	24
139	Genetic and physical mapping of the Rhodobacter sphaeroides photosynthetic gene cluster from R-prime pWS2. Plasmid, 1991, 25, 163-176.	0.4	11
140	Evidence for two promoters for the cytochrome c2 gene (cycA) of Rhodobacter sphaeroides. Journal of Bacteriology, 1991, 173, 3949-3957.	1.0	26
141	[22] Genetic techniques in rhodospirillaceae. Methods in Enzymology, 1991, 204, 459-485.	0.4	98
142	Rhodobacter sphaeroides spd mutations allow cytochrome c2-independent photosynthetic growth. Journal of Bacteriology, 1990, 172, 1954-1961.	1.0	28
143	Soluble Cytochrome Synthesis in Rhodobacter Sphaeroides. , 1990, , 95-104.		2
144	Control of photosynthetic membrane assembly in Rhodobacter sphaeroides mediated by puhA and flanking sequences. Journal of Bacteriology, 1989, 171, 436-446.	1.0	73

#	Article	IF	CITATIONS
145	Synthesis ofRhodobacter sphaeroidescytochromec2inEscherichia coli. FEMS Microbiology Letters, 1989, 59, 253-258.	0.7	33
146	Expression of a cytochrome c2 isozyme restores photosynthetic growth of Rhodobacter sphaeroides mutants lacking the wild-type cytochrome c2 gene. Archives of Biochemistry and Biophysics, 1989, 271, 502-507.	1.4	35
147	Expression of the Rhodobacter sphaeroides cytochrome c2 structural gene. Journal of Bacteriology, 1989, 171, 360-368.	1.0	80
148	Synthesis of Rhodobacter sphaeroides cytochrome c2 in Escherichia coli. FEMS Microbiology Letters, 1989, 50, 253-8.	0.7	12
149	The puf operon region of Rhodobacter sphaeroides. Photosynthesis Research, 1988, 19, 39-61.	1.6	30
150	Phenotypic and genetic characterization of cytochrome c2-deficient mutants of Rhodobacter sphaeroides. Biochemistry, 1988, 27, 1918-1925.	1.2	121
151	In vivo analysis of puf operon expression in Rhodobacter sphaeroides after deletion of a putative intercistronic transcription terminator. Journal of Bacteriology, 1988, 170, 4681-4692.	1.0	53
152	Construction, characterization, and complementation of a Puf- mutant of Rhodobacter sphaeroides. Journal of Bacteriology, 1988, 170, 320-329.	1.0	196
153	DNA sequence and in vitro expression of the B875 light-harvesting polypeptides of Rhodobacter sphaeroides. Journal of Bacteriology, 1987, 169, 742-750.	1.0	90
154	Specificity of the attenuation response of the threonine operon of Escherichia coli is determined by the threonine and isoleucine codons in the leader transcript. Journal of Molecular Biology, 1987, 194, 59-69.	2.0	31
155	Cloning, DNA sequence, and expression of the Rhodobacter sphaeroides cytochrome c2 gene. Journal of Bacteriology, 1986, 168, 962-972.	1.0	154
156	Cloning and expression of the Rhodobacter sphaeroides reaction center H gene. Journal of Bacteriology, 1986, 168, 953-961.	1.0	70
157	Enzymes of Glutamate and Glutamine Biosynthesis in Bacillus licheniformis. Current Topics in Cellular Regulation, 1984, 24, 145-152.	9.6	12
158	Biosynthesis of the photosynthetic membranes of rhodopseudomonas sphaeroides. Journal of Cellular Biochemistry, 1983, 22, 15-29.	1.2	41
159	Purification and characterization of an N-acylphosphatidylserine from Rhodopseudomonas sphaeroides. Biochemistry, 1982, 21, 2765-2773.	1.2	35
160	A new and specific assay for ammonia and glutamine sensitive to 100 pmol. Analytical Biochemistry, 1978, 90, 47-57.	1.1	27
161	Effect of cultural conditions on the concentrations of metabolic intermediates during growth and sporulation of Bacillus licheniformis. Journal of Bacteriology, 1978, 135, 363-372.	1.0	15
162	Use of an adenosine triphosphate analog, adenylyl imidodiphosphate, to evaluate adenosine triphosphate-dependent reactions in mitochondria. Archives of Biochemistry and Biophysics, 1976, 173, 231-236.	1.4	7