Michael D Best

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1790832/publications.pdf

Version: 2024-02-01

214721 331538 2,245 51 21 47 h-index citations g-index papers 56 56 56 3303 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Liposome triggered content release through molecular recognition of inositol trisphosphate. Chemical Communications, 2022, 58, 4520-4523.	2.2	2
2	ATP-Responsive Liposomes via Screening of Lipid Switches Designed to Undergo Conformational Changes upon Binding Phosphorylated Metabolites. Journal of the American Chemical Society, 2022, 144, 3746-3756.	6.6	12
3	Cyclic Disulfide Liposomes for Membrane Functionalization and Cellular Delivery. Chemistry - A European Journal, 2022, 28, .	1.7	4
4	Cover Feature: Cyclic Disulfide Liposomes for Membrane Functionalization and Cellular Delivery (Chem. Eur. J. 45/2022). Chemistry - A European Journal, 2022, 28, .	1.7	0
5	Surface-enhanced hyper-Raman scattering of Rhodamine 6G isotopologues: Assignment of lower vibrational frequencies. Journal of Chemical Physics, 2021, 154, 034703.	1.2	2
6	Advances in the Formulation and Assembly of Non-Cationic Lipid Nanoparticles for the Medical Application of Gene Therapeutics. Nanomaterials, 2021, 11, 825.	1.9	7
7	Demolish and Rebuild: Controlling Lipid Self-Assembly toward Triggered Release and Artificial Cells. Journal of Physical Chemistry B, 2021, 125, 12918-12933.	1.2	4
8	Atomic view of an amyloid dodecamer exhibiting selective cellular toxic vulnerability in acute brain slices. Protein Science, $2021, , .$	3.1	8
9	Zinc Triggered Release of Encapsulated Cargo from Liposomes via a Synthetic Lipid Switch. Bioconjugate Chemistry, 2021, 32, 2485-2496.	1.8	8
10	Metabolic labeling of glycerophospholipids via clickable analogs derivatized at the lipid headgroup. Chemistry and Physics of Lipids, 2020, 232, 104971.	1.5	20
11	Strategies for altering lipid self-assembly to trigger liposome cargo release. Chemistry and Physics of Lipids, 2020, 232, 104966.	1.5	18
12	Reactive Oxygen Species-Responsive Liposomes via Boronate-Caged Phosphatidylethanolamine. Bioconjugate Chemistry, 2020, 31, 2220-2230.	1.8	18
13	Calcium-responsive liposomes: Toward ion-mediated targeted drug delivery. Methods in Enzymology, 2020, 640, 105-129.	0.4	3
14	A General Approach to Enzymeâ€Responsive Liposomes. Chemistry - A European Journal, 2020, 26, 8597-8607.	1.7	25
15	Lipid Switches: Stimuliâ€Responsive Liposomes through Conformational Isomerism Driven by Molecular Recognition. Chemistry - A European Journal, 2019, 25, 20-25.	1.7	24
16	Labeling of Phosphatidylinositol Lipid Products in Cells through Metabolic Engineering by Using a Clickable <i>myo</i> å€Inositol Probe. ChemBioChem, 2019, 20, 172-180.	1.3	24
17	Cell mimetic liposomal nanocarriers for tailored delivery of vascular therapeutics. Chemistry and Physics of Lipids, 2019, 218, 149-157.	1.5	10
18	Calciumâ€Responsive Liposomes via a Synthetic Lipid Switch. Chemistry - A European Journal, 2018, 24, 3599-3607.	1.7	22

#	Article	IF	CITATIONS
19	Boronic acid liposomes for cellular delivery and content release driven by carbohydrate binding. Chemical Communications, 2018, 54, 6169-6172.	2.2	24
20	Artificial Membrane Fusion Triggered by Strain-Promoted Alkyne–Azide Cycloaddition. Bioconjugate Chemistry, 2017, 28, 923-932.	1.8	20
21	Improving the efficacy of liposome-mediated vascular gene therapy via lipid surface modifications. Journal of Surgical Research, 2017, 219, 136-144.	0.8	30
22	A Boronic Acid Assay for the Detection of Mucinâ€1 Glycoprotein from Cancer Cells. ChemBioChem, 2017, 18, 1578-1582.	1.3	4
23	Design, Synthesis, and Evaluation of Novel Auxin Mimic Herbicides. Journal of Agricultural and Food Chemistry, 2016, 64, 3533-3537.	2.4	14
24	A Clickable and Photocleavable Lipid Analogue for Cell Membrane Delivery and Release. Bioconjugate Chemistry, 2015, 26, 1021-1031.	1.8	21
25	Cytochrome P450 Inhibitors Reduce Creeping Bentgrass (Agrostis stolonifera) Tolerance to Topramezone. PLoS ONE, 2015, 10, e0130947.	1.1	17
26	Plasmonics for Surface Enhanced Raman Scattering: Nanoantennas for Single Molecules. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 152-162.	1.9	48
27	Global approaches for the elucidation of phosphoinositide-binding proteins. Chemistry and Physics of Lipids, 2014, 182, 19-28.	1.5	13
28	Triggered Liposomal Release through a Synthetic Phosphatidylcholine Analogue Bearing a Photocleavable Moiety Embedded within the $\langle i\rangle$ sn $\langle i\rangle$ â \in 2 Acyl Chain. Chemistry - A European Journal, 2014, 20, 3350-3357.	1.7	38
29	Surface-Enhanced Hyper-Raman Scattering from Single Molecules. Journal of Physical Chemistry Letters, 2013, 4, 3420-3423.	2.1	30
30	Combined photoelectron, collision-induced dissociation, and computational studies of parent and fragment anions of N-paranitrophenylsulfonylalanine and N-paranitrophenylalanine. Journal of Chemical Physics, 2013, 139, 224308.	1.2	0
31	Single-Molecule Surface-Enhanced Raman Scattering: Can STEM/EELS Image Electromagnetic Hot Spots?. Journal of Physical Chemistry Letters, 2012, 3, 2303-2309.	2.1	62
32	Membrane labeling and immobilization viacopper-free click chemistry. Chemical Communications, 2012, 48, 1431-1433.	2.2	24
33	Microarray analysis of Akt PH domain binding employing synthetic biotinylated analogs of all seven phosphoinositide headgroup isomers. Chemistry and Physics of Lipids, 2012, 165, 207-215.	1.5	11
34	Chloride binding by a polyimidazolium macrocycle detected via fluorescence, NMR, and X-ray crystallography. Tetrahedron, 2012, 68, 1669-1673.	1.0	11
35	Chemical approaches to the investigation of proteinâ€membrane binding interactions using synthetic lipid probes. FASEB Journal, 2012, 26, 595.1.	0.2	0
36	Phosphatidylinositol 3,4,5-Trisphosphate Activity Probes for the Labeling and Proteomic Characterization of Protein Binding Partners. Biochemistry, 2011, 50, 11143-11161.	1.2	45

#	Article	IF	CITATIONS
37	Exploiting Bioorthogonal Chemistry to Elucidate Protein–Lipid Binding Interactions and Other Biological Roles of Phospholipids. Accounts of Chemical Research, 2011, 44, 686-698.	7.6	74
38	Fluorescent bis-cyclen tweezer receptors for inositol (1,4,5)-trisphosphate. Tetrahedron, 2011, 67, 3803-3808.	1.0	18
39	Reeling in the Catch: Advancing Cleavable Linkers for Proteomics. Chemistry and Biology, 2010, 17, 1166-1168.	6.2	3
40	Inositol polyphosphates, diphosphoinositol polyphosphates and phosphatidylinositol polyphosphate lipids: Structure, synthesis, and development of probes for studying biological activity. Natural Product Reports, 2010, 27, 1403.	5.2	87
41	Synthesis of Modular Headgroup Conjugates Corresponding to All Seven Phosphatidylinositol Polyphosphate Isomers for Convenient Probe Generation. European Journal of Organic Chemistry, 2009, 2009, 4170-4179.	1.2	17
42	Modular synthesis of bis(monoacylglycero)phosphate for convenient access to analogues bearing hydrocarbon and perdeuterated acyl chains of varying length. Tetrahedron, 2009, 65, 6844-6849.	1.0	6
43	Click Chemistry and Bioorthogonal Reactions: Unprecedented Selectivity in the Labeling of Biological Molecules. Biochemistry, 2009, 48, 6571-6584.	1.2	563
44	Microplate-Based Analysis of Proteinâ^'Membrane Binding Interactions via Immobilization of Whole Liposomes Containing a Biotinylated Anchor. Bioconjugate Chemistry, 2009, 20, 376-383.	1.8	30
45	Microplate-Based Characterization of Protein-Phosphoinositide Binding Interactions Using a Synthetic Biotinylated Headgroup Analogue. Bioconjugate Chemistry, 2009, 20, 310-316.	1.8	20
46	Modular synthesis of biologically active phosphatidic acid probes using click chemistry. Molecular BioSystems, 2009, 5, 962.	2.9	22
47	Synthesis and Convenient Functionalization of Azide-Labeled Diacylglycerol Analogues for Modular Access to Biologically Active Lipid Probes. Bioconjugate Chemistry, 2008, 19, 1855-1863.	1.8	33
48	Carbohydrate microarray for profiling the antibodies interacting with Globo H tumor antigen. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15-20.	3.3	214
49	Covalent Display of Oligosaccharide Arrays in Microtiter Plates. Journal of the American Chemical Society, 2004, 126, 8640-8641.	6.6	178
50	Abiotic guanidinium containing receptors for anionic species. Coordination Chemistry Reviews, 2003, 240, 3-15.	9.5	351
51	Reactive Oxygen Species (ROS) Activated Liposomal Cell Delivery using a Boronate aged Guanidine Lipid. Chemistry - A European Journal, 0, , .	1.7	5