Pascal Pigeon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/179059/publications.pdf

Version: 2024-02-01

86 2,948 34 52
papers citations h-index g-index

95 95 95 2347 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Diversity-oriented synthesis and bioactivity evaluation of N-substituted ferrocifen compounds as novel antiproliferative agents against TNBC cancer cells. European Journal of Medicinal Chemistry, 2022, 234, 114202.	2.6	8
2	\hat{l}_{\pm} -Hydroxylactams as Efficient Entries to Diversely Functionalized Ferrociphenols: Synthesis and Antiproliferative Activity Studies. Molecules, 2022, 27, 4549.	1.7	3
3	Heterogeneity of Response to Iron-Based Metallodrugs in Glioblastoma Is Associated with Differences in Chemical Structures and Driven by FAS Expression Dynamics and Transcriptomic Subtypes. International Journal of Molecular Sciences, 2021, 22, 10404.	1.8	11
4	Antimicrobial, Antitumor and Side Effects Assessment of a Newly Synthesized Tamoxifen Analog. Current Topics in Medicinal Chemistry, 2020, 20, 2281-2288.	1.0	4
5	Importance of Combining Advanced Particle Size Analysis Techniques To Characterize Cell-Penetrating Peptide–Ferrocifen Self-Assemblies. Journal of Physical Chemistry Letters, 2019, 10, 6613-6620.	2.1	7
6	Small Structural Differences between Two Ferrocenyl Diphenols Determine Large Discrepancies of Reactivity and Biological Effects. ChemMedChem, 2019, 14, 1717-1726.	1.6	17
7	Atypical Lone Pair–π Interaction with Quinone Methides in a Series of Imidoâ€Ferrociphenol Anticancer Drug Candidates. Angewandte Chemie, 2019, 131, 8509-8513.	1.6	6
8	Atypical Lone Pair–π Interaction with Quinone Methides in a Series of Imidoâ€Ferrociphenol Anticancer Drug Candidates. Angewandte Chemie - International Edition, 2019, 58, 8421-8425.	7.2	30
9	Selective cytotoxicity of arene tricarbonylchromium towards tumour cell lines. Journal of Organometallic Chemistry, 2018, 862, 7-12.	0.8	5
10	A new generation of ferrociphenols leads to a great diversity of reactive metabolites, and exhibits remarkable antiproliferative properties. Chemical Science, 2018, 9, 70-78.	3.7	44
11	Anticancer properties of lipid and poly($\hat{l}\mu$ -caprolactone) nanocapsules loaded with ferrocenyl-tamoxifen derivatives. Journal of Pharmacy and Pharmacology, 2018, 70, 1474-1484.	1.2	8
12	Enhanced and preferential internalization of lipid nanocapsules into human glioblastoma cells: effect of a surface-functionalizing NFL peptide. Nanoscale, 2018, 10, 13485-13501.	2.8	26
13	Aryl Butenes Active against K562 Cells and Lacking Tyrosinase Inhibitory Activity as New Leads in the Treatment of Leukemia. Mini-Reviews in Medicinal Chemistry, 2018, 18, 1294-1301.	1.1	2
14	Tamoxifen-like metallocifens target the thioredoxin system determining mitochondrial impairment leading to apoptosis in Jurkat cells. Metallomics, 2017, 9, 949-959.	1.0	30
15	A New Series of Succinimido-ferrociphenols and Related Heterocyclic Species Induce Strong Antiproliferative Effects, Especially against Ovarian Cancer Cells Resistant to Cisplatin. Journal of Medicinal Chemistry, 2017, 60, 8358-8368.	2.9	40
16	The inhibition of tyrosinase by some aryl butenes: A desired activity or a side effect to avoid. Journal of Organometallic Chemistry, 2017, 848, 133-141.	0.8	4
17	Side-Chain Effects on the 1-(Bis-aryl-methylidene)-[3] ferrocenophane Skeleton: Antiproliferative Activity against TNBC Cancer Cells and Comparison with the Acyclic Ferrocifen Series. European Journal of Inorganic Chemistry, 2017, 2017, 454-465.	1.0	6
18	Synthesis and antiproliferative evaluation of novel hydroxypropyl-ferrociphenol derivatives, resulting from the modification of hydroxyl groups. Journal of Organometallic Chemistry, 2017, 829, 108-115.	0.8	11

#	Article	IF	CITATIONS
19	Ferrocenyl Quinone Methide–Thiol Adducts as New Antiproliferative Agents: Synthesis, Metabolic Formation from Ferrociphenols, and Oxidative Transformation. Angewandte Chemie, 2016, 128, 10587-10590.	1.6	10
20	Ferrocenyl Quinone Methide–Thiol Adducts as New Antiproliferative Agents: Synthesis, Metabolic Formation from Ferrociphenols, and Oxidative Transformation. Angewandte Chemie - International Edition, 2016, 55, 10431-10434.	7.2	33
21	Enzymatic oxidation of ansa-ferrocifen leads to strong and selective thioredoxin reductase inhibition in vitro. Journal of Inorganic Biochemistry, 2016, 165, 146-151.	1.5	19
22	The length of the bridging chain in ansa-metallocenes influences their antiproliferative activity against triple negative breast cancer cells (TNBC). Dalton Transactions, 2016, 45, 13126-13134.	1.6	8
23	Efficacy of a novel ferrocenyl diaryl butene citrate compound as a biocide for preventing healthcare-associated infections. MedChemComm, 2016, 7, 948-954.	3.5	2
24	Organometallic Antitumor Compounds: Ferrocifens as Precursors to Quinone Methides. Angewandte Chemie - International Edition, 2015, 54, 10230-10233.	7.2	68
25	Oxidative Metabolism of Ferrocene Analogues of Tamoxifen: Characterization and Antiproliferative Activities of the Metabolites. ChemMedChem, 2015, 10, 981-990.	1.6	33
26	Antiplasmodial activity of iron(II) and ruthenium(II) organometallic complexes against Plasmodium falciparum blood parasites. Memorias Do Instituto Oswaldo Cruz, 2015, 110, 981-988.	0.8	12
27	Phthalimido–ferrocidiphenol cyclodextrin complexes: Characterization and anticancer activity. International Journal of Pharmaceutics, 2015, 491, 323-334.	2.6	14
28	Antibacterial properties and mode of action of new triaryl butene citrate compounds. European Journal of Medicinal Chemistry, 2014, 76, 408-413.	2.6	10
29	Evidence for Targeting Thioredoxin Reductases with Ferrocenyl Quinone Methides. A Possible Molecular Basis for the Antiproliferative Effect of Hydroxyferrocifens on Cancer Cells. Journal of Medicinal Chemistry, 2014, 57, 8849-8859.	2.9	102
30	Ferrocifen derivatives that induce senescence in cancer cells: selected examples. Journal of Inorganic Biochemistry, 2014, 141, 144-151.	1.5	56
31	Oxidative Sequence of a Ruthenocene-Based Anticancer Drug Candidate in a Basic Environment. Organometallics, 2014, 33, 4940-4946.	1.1	18
32	Molecular Mechanism of Action of 2â€Ferrocenylâ€1,1â€diphenylbutâ€1â€ene on HLâ€60 Leukemia Cells. ChemMedChem, 2014, 9, 2580-2586.	1.6	14
33	Atypical McMurry Cross-Coupling Reactions Leading to a New Series of Potent Antiproliferative Compounds Bearing the Key [Ferrocenyl-Ene-Phenol] Motif. Molecules, 2014, 19, 10350-10369.	1.7	18
34	The inÂvivo performance of ferrocenyl tamoxifen lipid nanocapsules in xenografted triple negative breast cancer. Biomaterials, 2013, 34, 6949-6956.	5.7	43
35	Ferrocenyl flavonoid-induced morphological modifications of endothelial cells and cytotoxicity against B16 murine melanoma cells. Journal of Organometallic Chemistry, 2013, 734, 78-85.	0.8	28
36	Effect of the amino chain length and the transformation into citric acid salts of aryl-diphenyl-butenes and ferrocenyl-diphenyl-butenes bearing two dimethylaminoalkyl chains on their antimicrobial activities. SpringerPlus, 2013, 2, 508.	1.2	4

#	Article	IF	CITATIONS
37	Selection of a suitable disc bioassay for the screening of anti-tumor molecules. International Journal of Biomedical Science, 2013, 9, 230-6.	0.5	3
38	Ferrocenyl catechols: synthesis, oxidation chemistry and anti-proliferative effects on MDA-MB-231 breast cancer cells. Dalton Transactions, 2012, 41, 7537.	1.6	45
39	Synthesis and Antiproliferative Effects of [3]Ferrocenophane Transposition Products and Pinacols Obtained from McMurry Cross-Coupling Reactions. Organometallics, 2012, 31, 5856-5866.	1.1	20
40	A new series of ferrocifen derivatives, bearing two aminoalkyl chains, with strong antiproliferative effects on breast cancer cells. New Journal of Chemistry, 2011, 35, 2212.	1.4	38
41	Biological evaluation of twenty-eight ferrocenyl tetrasubstituted olefins: Cancer cell growth inhibition, ROS production and hemolytic activity. European Journal of Medicinal Chemistry, 2011, 46, 3778-3787.	2.6	38
42	Evaluation of bactericidal and fungicidal activity of ferrocenyl or phenyl derivatives in the diphenyl butene series. Journal of Organometallic Chemistry, 2011, 696, 1038-1048.	0.8	45
43	Antiparasitic and immunomodulatory activities of 1,1â€bis(4â€hydroxyphenyl)â€2â€phenylâ€butâ€1â€ene and its protected and free 2â€ferrocenyl derivatives. Drug Development Research, 2010, 71, 69-75.	⁵ 1.4	6
44	Synthesis, Cytotoxicity, and COMPARE Analysis of Ferrocene and [3]Ferrocenophane Tetrasubstituted Olefin Derivatives against Human Cancer Cells. ChemMedChem, 2010, 5, 2039-2050.	1.6	76
45	Comparative toxicity of [3]ferrocenophane and ferrocene moieties on breast cancer cells. Tetrahedron Letters, 2010, 51, 118-120.	0.7	54
46	Facile synthesis and strong antiproliferative activity of disubstituted diphenylmethylidenyl-[3]ferrocenophanes on breast and prostate cancer cell lines. MedChemComm, 2010, 1, 149.	3.5	36
47	Synthesis and Structure–Activity Relationships of Ferrocenyl Tamoxifen Derivatives with Modified Side Chains. Chemistry - A European Journal, 2009, 15, 684-696.	1.7	58
48	Dose effect activity of ferrocifen-loaded lipid nanocapsules on a 9L-glioma model. International Journal of Pharmaceutics, 2009, 379, 317-323.	2.6	55
49	The replacement of a phenol group by an aniline or acetanilide group enhances the cytotoxicity of 2-ferrocenyl-1,1-diphenyl-but-l-ene compounds against breast cancer cells. Journal of Organometallic Chemistry, 2009, 694, 895-901.	0.8	65
50	Synthesis, oxidation chemistry and cytotoxicity studies on ferrocene derivatives of diethylstilbestrol. Dalton Transactions, 2009, , 10871.	1.6	36
51	A [3]Ferrocenophane Polyphenol Showing a Remarkable Antiproliferative Activity on Breast and Prostate Cancer Cell Lines. Journal of Medicinal Chemistry, 2009, 52, 4964-4967.	2.9	125
52	Role of aromatic substituents on the antiproliferative effects of diphenyl ferrocenyl butene compounds. Dalton Transactions, 2009, , 4318.	1.6	28
53	Ferrocenyl compounds possessing protected phenol and thiophenol groups: Synthesis, X-ray structure, and in vitro biological effects against breast cancer. Journal of Organometallic Chemistry, 2008, 693, 1716-1722.	0.8	40
54	Electrochemical attachment of a conjugated amino–ferrocifen complex onto carbon and metal surfaces. Journal of Electroanalytical Chemistry, 2008, 619-620, 169-175.	1.9	43

#	Article	IF	CITATIONS
55	Nanoparticles loaded with ferrocenyl tamoxifen derivatives for breast cancer treatment. International Journal of Pharmaceutics, 2008, 347, 128-135.	2.6	61
56	Lipid nanocapsules loaded with an organometallic tamoxifen derivative as a novel drug-carrier system for experimental malignant gliomas. Journal of Controlled Release, 2008, 130, 146-153.	4.8	113
57	Ferrocifens and Ferrocifenols as New Potential Weapons against Breast Cancer. Chimia, 2007, 61, 716.	0.3	152
58	The influence of phenolic hydroxy substitution on the electron transfer and anti-cancer properties of compounds based on the 2-ferrocenyl-1-phenyl-but-1-ene motif. Dalton Transactions, 2007, , 5073.	1.6	83
59	Organometallic diphenols: The importance of the organometallic moiety on the expression of a cytotoxic effect on breast cancer cells. Journal of Organometallic Chemistry, 2007, 692, 1315-1326.	0.8	66
60	Organometallic analogues of tamoxifen: Effect of the amino side-chain replacement by a carbonyl ferrocenyl moiety in hydroxytamoxifen. Journal of Organometallic Chemistry, 2007, 692, 1219-1225.	0.8	46
61	Modification of the Estrogenic Properties of Diphenols by the Incorporation of Ferrocene. Generation of Antiproliferative Effects in Vitro. Journal of Medicinal Chemistry, 2005, 48, 3937-3940.	2.9	200
62	Selective Estrogen Receptor Modulators in the Ruthenocene Series. Synthesis and Biological Behavior. Journal of Medicinal Chemistry, 2005, 48, 2814-2821.	2.9	109
63	Selective Estrogen-Receptor Modulators (SERMs) in the Cyclopentadienylrhenium Tricarbonyl Series: Synthesis and Biological Behaviour. ChemBioChem, 2004, 5, 1104-1113.	1.3	66
64	A short route to cyclopentadienyltricarbonylrhenium substituted derivatives. Journal of Organometallic Chemistry, 2003, 668, 140-144.	0.8	10
65	Intramolecular Addition of a Hydroxyl to an N-Acyliminium System. Application to the Synthesis of Isoindolo[2,1-a][3,1]benzoxazine and Isoindolo[1,2-c][2,4]benzoxazepine Derivatives. Heterocycles, 2002, 56, 129.	0.4	13
66	First anti-oestrogen in the cyclopentadienyl rhenium tricarbonyl series. Synthesis and study of antiproliferative effects. Chemical Communications, 2001, , 383-384.	2.2	67
67	Study of a 1,6-hydride shift in an open chain of hydroxylactam-triarylcarbinols. Tetrahedron, 2001, 57, 4939-4943.	1.0	8
68	Thieno[2′,3′:5,6]azepino[2,1â€∢i>a]isoindolones from hydroxylactamâ€alcohols <i>via N</i> â€acylimin ion olefin cyclization. Journal of Heterocyclic Chemistry, 2001, 38, 35-39.	ium 1.4	3
69	Quinoxalines, Bezodiazepines and Bezodiazocines Fused to Pyrrole and Isoindole via N-Acyliminium Ion Aromatic Cyclization. Heterocycles, 2000, 52, 273.	0.4	9
70	Acyliminium ionâ€olefin cyclization leading to isoindolo[2,1â€ <i>a</i>)]quinoline derivatives. Journal of Heterocyclic Chemistry, 1999, 36, 691-695.	1.4	15
71	Polycyclic systems: Synthesis of isoindolo[2,1â€ <i>b</i>]â€pyrrolo[1,2â€ <i>d</i>][2,4]benzodiazocine and isoindoloâ€{1,2â€ <i>d</i>][1,5]benzodiazocine. Journal of Heterocyclic Chemistry, 1999, 36, 735-738.	1.4	6
72	Selective access to N-aryl or N-alkyl derivatives of isoindolo [2,1-b] [2,4] benzo (or thieno) diazepines. Tetrahedron, 1998, 54, 1497-1506.	1.0	20

#	Article	IF	CITATIONS
73	Diisoindolothieno[2,4]diazepines via a diastereoselective N-acyliminium ion cyclization. Tetrahedron Letters, 1998, 39, 8659-8662.	0.7	9
74	Synthesis of benzo(or furo)[5,6]azepino[2,1-a]isoindolone derivatives: π-cyclisations of N-acyliminium ions. Tetrahedron Letters, 1998, 39, 9187-9190.	0.7	36
75	Synthesis and reduction of thieno[2′,3′(3′,2′ or 3′,4′):5,6]-azocino[2,1-a]isoindole-7, 13-diones. Heterocyclic Chemistry, 1998, 35, 1429-1433.	Journal of	f ₂
76	New fused lactones from indolizinediones via N-acyliminium ions. Tetrahedron, 1998, 54, 8737-8744.	1.0	20
77	Novel Approach to Isoindolo[2,1-a]quinolines. Synthetic Communications, 1998, 28, 2507-2516.	1.1	18
78	Introduction of a Carboxymethylamino(or oxy Or thio) Group in the 3 Position of 2-Aryl(or) Tj ETQq0 0 0 rgBT /Ov	erlock 10	Tf 50 542 Td
79	Acyliminium ion cyclizations: Synthesis of thieno[2′,3′:3,4]pyrrolo[2,1-a] isoindolone and benzo[a]thieno[2,3(3,2 or 3,4)-g]indolizinones. Tetrahedron, 1997, 53, 2495-2504.	1.0	43
80	Synthesis of dibenz[c,e]azepine and benzo[e]thieno[c]azepine via, N-acyliminium ion cyclization. Tetrahedron Letters, 1997, 38, 1041-1042.	0.7	25
81	A New Access to Isoindolo[2,1-b][2,4]benzodiazepines through an N-Acyliminium Ion - Amide Cyclization. Tetrahedron Letters, 1997, 38, 2985-2988.	0.7	45
82	Tetracyclic systems: Synthesis of isoindolo[1,2â€ <i>b</i>]thienoâ€[2,3(3,2 or 3,4)â€ <i>e</i>][1,3]thiazocines and Isoindolo[2,1â€ <i>a</i>]thienoâ€[2,3(3,2 or 3,4)â€ <i>f</i>][1,4] and [1,5]diazocines. Journal of Heterocyclic Chemistry, 1997, 34, 375-380.	1.4	12
83	Intramolecular amidoalkylation cyclizations in synthesis of novel pyrrolo(or) Tj ETQq1 1 0.784314 rgBT /Overlock	10 Tf 50 3	342 Td (isc <mark>in</mark>
84	Synthesis of thieno[2′,3′(3′,4′ or 3′,2′):5,6]azepino[2,1â€ <i>a</i>]isoindolediones from <i>N</i> â€Thienyl′(3)â€ylmethylphthalimides. Journal of Heterocyclic Chemistry, 1996, 33, 129-135.	1.4	21
85	Benzothienoindolizidines via intramolecular aryl radical cyclization or palladium catalyzed cyclization. Tetrahedron Letters, 1996, 37, 7707-7710.	0.7	61
86	Inhibition of Cathepsin B by Ferrocenyl Indenes Highlights a new Pharmacological Facet of Ferrocifens. European Journal of Inorganic Chemistry, 0, , .	1.0	3