Kathryn Volk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1790220/publications.pdf

Version: 2024-02-01

50 papers	1,463 citations	279701 23 h-index	36 g-index
51 all docs	51 docs citations	51 times ranked	1151 citing authors

#	Article	IF	CITATIONS
1	The Scattered Disk as the Source of the Jupiter Family Comets. Astrophysical Journal, 2008, 687, 714-725.	1.6	111
2	OSSOS. VII. 800+ Trans-Neptunian Objectsâ€"The Complete Data Release. Astrophysical Journal, Supplement Series, 2018, 236, 18.	3.0	108
3	THE OUTER SOLAR SYSTEM ORIGINS SURVEY. I. DESIGN AND FIRST-QUARTER DISCOVERIES. Astronomical Journal, 2016, 152, 70.	1.9	105
4	CONSOLIDATING AND CRUSHING EXOPLANETS: DID IT HAPPEN HERE?. Astrophysical Journal Letters, 2015, 806, L26.	3.0	90
5	CORRALLING A DISTANT PLANET WITH EXTREME RESONANT KUIPER BELT OBJECTS. Astrophysical Journal Letters, 2016, 824, L22.	3.0	72
6	All planetesimals born near the Kuiper belt formed as binaries. Nature Astronomy, 2017, 1, .	4.2	63
7	OSSOS. VI. Striking Biases in the Detection of Large Semimajor Axis Trans-Neptunian Objects. Astronomical Journal, 2017, 154, 50.	1.9	62
8	Do Centaurs preserve their source inclinations?. Icarus, 2013, 224, 66-73.	1.1	55
9	OSSOS III—RESONANT TRANS-NEPTUNIAN POPULATIONS: CONSTRAINTS FROM THE FIRST QUARTER OF THE OUTER SOLAR SYSTEM ORIGINS SURVEY. Astronomical Journal, 2016, 152, 23.	1.9	52
10	29P/Schwassmann–Wachmann 1, A Centaur in the Gateway to the Jupiter-family Comets. Astrophysical Journal Letters, 2019, 883, L25.	3.0	50
11	The Curiously Warped Mean Plane of the Kuiper Belt. Astronomical Journal, 2017, 154, 62.	1.9	45
12	Col-OSSOS: z-Band Photometry Reveals Three Distinct TNO Surface Types. Astronomical Journal, 2017, 154, 101.	1.9	44
13	Transneptunian Space. Annual Review of Astronomy and Astrophysics, 2021, 59, 203-246.	8.1	36
14	OSSOS. V. Diffusion in the Orbit of a High-perihelion Distant Solar System Object. Astronomical Journal, 2017, 153, 262.	1.9	34
15	INCLINATION MIXING IN THE CLASSICAL KUIPER BELT. Astrophysical Journal, 2011, 736, 11.	1.6	32
16	Col-OSSOS: The Colors of the Outer Solar System Origins Survey. Astrophysical Journal, Supplement Series, 2019, 243, 12.	3.0	31
17	Trans-Neptunian Objects Transiently Stuck in Neptune's Mean-motion Resonances: Numerical Simulations of the Current Population. Astronomical Journal, 2018, 156, 33.	1.9	29
18	OSSOS. IX. Two Objects in Neptune's 9:1 Resonanceâ€"Implications for Resonance Sticking in the Scattering Population. Astronomical Journal, 2018, 155, 260.	1.9	29

#	Article	IF	CITATIONS
19	Neptune's 5:2 Resonance in the Kuiper Belt. Astronomical Journal, 2018, 156, 55.	1.9	26
20	Col-OSSOS: Color and Inclination Are Correlated throughout the Kuiper Belt. Astronomical Journal, 2019, 157, 94.	1.9	26
21	OSSOS XX: The Meaning of Kuiper Belt Colors. Astronomical Journal, 2020, 160, 46.	1.9	26
22	Not a Simple Relationship between Neptune's Migration Speed and Kuiper Belt Inclination Excitation. Astronomical Journal, 2019, 158, 64.	1.9	24
23	Carbon Chain Depletion of 21/Borisov. Astrophysical Journal Letters, 2020, 889, L38.	3.0	24
24	OSSOS Finds an Exponential Cutoff in the Size Distribution of the Cold Classical Kuiper Belt. Astrophysical Journal Letters, 2021, 920, L28.	3.0	22
25	The effect of orbital evolution on the Haumea (2003 EL61) collisional family. Icarus, 2012, 221, 106-115.	1.1	21
26	OSSOS. XIX. Testing Early Solar System Dynamical Models Using OSSOS Centaur Detections. Astronomical Journal, 2019, 158, 132.	1.9	19
27	OSSOS. XIV. The Plane of the Kuiper Belt. Astronomical Journal, 2019, 158, 49.	1.9	19
28	Dynamical Instabilities in Systems of Multiple Short-period Planets Are Likely Driven by Secular Chaos: A Case Study of Kepler-102. Astronomical Journal, 2020, 160, 98.	1.9	18
29	OSSOS. IV. DISCOVERY OF A DWARF PLANET CANDIDATE IN THE 9:2 RESONANCE WITH NEPTUNE. Astronomical Journal, 2016, 152, 212.	1.9	17
30	P/2019 LD2 (ATLAS): An Active Centaur in Imminent Transition to the Jupiter Family. Astrophysical Journal Letters, 2020, 904, L20.	3.0	17
31	OSSOS. XXI. Collision Probabilities in the Edgeworth–Kuiper Belt. Astronomical Journal, 2021, 161, 195.	1.9	16
32	Physical Characterization of the 2017 December Outburst of the Centaur 174P/Echeclus. Astronomical Journal, 2019, 158, 255.	1.9	14
33	OSSOS. Astronomy and Astrophysics, 2019, 621, A102.	2.1	11
34	OSSOS. XVIII. Constraining Migration Models with the 2:1 Resonance Using the Outer Solar System Origins Survey. Astronomical Journal, 2019, 158, 214.	1.9	10
35	Contemporaneous Multiwavelength and Precovery Observations of the Active Centaur P/2019 LD2 (ATLAS). Planetary Science Journal, 2021, 2, 48.	1.5	10
36	Machine learning classification of Kuiper belt populations. Monthly Notices of the Royal Astronomical Society, 2020, 497, 1391-1403.	1.6	9

#	Article	IF	Citations
37	OSSOS: The eccentricity and inclination distributions of the stable neptunian Trojans. Icarus, 2021, 361, 114391.	1.1	9
38	K2-138 g: Spitzer Spots a Sixth Planet for the Citizen Science System. Astronomical Journal, 2021, 161, 219.	1.9	8
39	An Extremely Temporary Co-orbital: The Dynamical State of Active Centaur 2019 LD2. Research Notes of the AAS, 2020, 4, 74.	0.3	8
40	Col-OSSOS: Compositional Homogeneity of Three Kuiper Belt Binaries. Planetary Science Journal, 2020, 1, 16.	1.5	8
41	OSSOS XXV: Large Populations and Scattering–Sticking in the Distant Trans-Neptunian Resonances. Planetary Science Journal, 2022, 3, 113.	1.5	8
42	OSSOS. XII. Variability Studies of 65 Trans-Neptunian Objects Using the Hyper Suprime-Cam. Astrophysical Journal, Supplement Series, 2019, 244, 19.	3.0	7
43	Free Inclinations for Trans-Neptunian Objects in the Main Kuiper Belt. Astrophysical Journal, Supplement Series, 2022, 259, 54.	3.0	7
44	A dearth of small members in the Haumea family revealed by OSSOS. Nature Astronomy, 2020, 4, 89-96.	4.2	6
45	A Software Roadmap for Solar System Science with the Large Synoptic Survey Telescope. Research Notes of the AAS, 2019, 3, 51.	0.3	6
46	Col-OSSOS: The Distinct Color Distribution of Single and Binary Cold Classical KBOs. Planetary Science Journal, 2021, 2, 90.	1.5	5
47	OSSOS. XVII. An upper limit on the number of distant planetary objects in the Solar System. Icarus, 2021, 356, 113793.	1.1	4
48	Dust Outburst Dynamics and Hazard Assessment for Close Spacecraft–Comet Encounters. Planetary Science Journal, 2021, 2, 154.	1.5	3
49	OSSOS. XXIII. 2013 VZ ₇₀ and the Temporary Coorbitals of the Giant Planets. Planetary Science Journal, 2021, 2, 212.	1.5	3
50	Col-OSSOS: Probing Ice Line/Color Transitions within the Kuiper Belt's Progenitor Populations. Planetary Science Journal, 2022, 3, 9.	1.5	3