Varun Kumar Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1789802/publications.pdf

Version: 2024-02-01

20 papers 922 citations

16 h-index 752698 20 g-index

20 all docs

 $\begin{array}{c} 20 \\ \\ \text{docs citations} \end{array}$

times ranked

20

1519 citing authors

#	Article	IF	CITATIONS
1	Multigram Mechanochemical synthesis of a Salophen Complex: A Comparative Analysis. ACS Sustainable Chemistry and Engineering, 2021, 9, 1152-1160.	6.7	42
2	Hydroâ€Assisted Selfâ€Regenerating Brominated <i>N</i> â€Alkylated Thiophene Diketopyrrolopyrrole Dye Nanofibers—A Sustainable Synthesis Route for Renewable Air Filter Materials. Small, 2020, 16, e1906319.	10.0	12
3	Highly Efficient and Stable Inverted Perovskite Solar Cell Obtained via Treatment by Semiconducting Chemical Additive. Advanced Materials, 2019, 31, e1805554.	21.0	134
4	Organic Photocatalyst for ppm-Level Visible-Light-Driven Reversible Addition–Fragmentation Chain-Transfer (RAFT) Polymerization with Excellent Oxygen Tolerance. Macromolecules, 2019, 52, 5538-5545.	4.8	56
5	A Mechanoresponsive Phaseâ€Changing Electrolyte Enables Fabrication of Highâ€Output Solidâ€State Photobioelectrochemical Devices from Pigmentâ€Protein Multilayers. Advanced Materials, 2018, 30, 1704073.	21.0	43
6	Biohybrid Photoproteinâ€Semiconductor Cells with Deep‣ying Redox Shuttles Achieve a 0.7 V Photovoltage. Advanced Functional Materials, 2018, 28, 1703689.	14.9	42
7	Highly efficient organic photocatalysts discovered via a computer-aided-design strategy for visible-light-driven atom transfer radical polymerization. Nature Catalysis, 2018, 1, 794-804.	34.4	124
8	Transparent Nanofibrous Mesh Selfâ€Assembled from Molecular LEGOs for High Efficiency Air Filtration with New Functionalities. Small, 2017, 13, 1601924.	10.0	31
9	Inkjet-Printable Hydrochromic Paper for Encrypting Information and Anticounterfeiting. ACS Applied Materials & Samp; Interfaces, 2017, 9, 33071-33079.	8.0	92
10	Optical, electrochemical, third order nonlinear optical, and excited state dynamics studies of bis(3,5-trifluoromethyl)phenyl-zinc phthalocyanine. RSC Advances, 2015, 5, 20810-20817.	3.6	15
11	D–π–A system based on zinc porphyrin dyes for dye-sensitized solar cells: Combined experimental and DFT–TDDFT study. Polyhedron, 2015, 100, 313-320.	2.2	29
12	Optical, electrochemical, third-order nonlinear optical, and excited state dynamics studies of thio-zinc phthalocyanine. Journal of Porphyrins and Phthalocyanines, 2014, 18, 305-315.	0.8	19
13	Sterically demanding zinc(<scp>ii</scp>) phthalocyanines: synthesis, optical, electrochemical, nonlinear optical, excited state dynamics studies. Journal of Materials Chemistry C, 2014, 2, 1711-1722.	5.5	63
14	Emerging molecular design strategies of unsymmetrical phthalocyanines for dye-sensitized solar cell applications. RSC Advances, 2014, 4, 6970.	3.6	94
15	Near-infrared absorbing unsymmetrical Zn(II) phthalocyanine for dye-sensitized solar cells. Inorganica Chimica Acta, 2013, 407, 289-296.	2.4	21
16	Sterically demanded unsymmetrical zinc phthalocyanines for dye-sensitized solar cells. Dyes and Pigments, 2013, 98, 518-529.	3.7	40
17	Organic-Ruthenium(II) Polypyridyl Complex Based Sensitizer for Dye-Sensitized Solar Cell Applications. Advances in OptoElectronics, 2011, 2011, 1-8.	0.6	11
18	Synthesis and photoelectrochemical characterization of a high molar extinction coefficient heteroleptic ruthenium(II) complex. Journal of Chemical Sciences, 2011, 123, 371-378.	1.5	20

#	Article	lF	CITATIONS
19	Triphenylamine–phthalocyanine based sensitizer for sensitization of nanocrystalline TiO2 films. Solar Energy, 2011, 85, 1204-1212.	6.1	33
20	Grain Rotation and Grain Boundary Selection in Thin Films. Materials Research Society Symposia Proceedings, 1996, 458, 301.	0.1	1