Andrew P Halestrap

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/178941/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interleukin-33 regulates metabolic reprogramming of the retinal pigment epithelium in response to immune stressors. JCI Insight, 2021, 6, .	2.3	6
2	Maintenance of complex I and its supercomplexes by NDUF-11 is essential for mitochondrial structure, function and health. Journal of Cell Science, 2021, 134, .	1.2	17
3	The roles of cytosolic and intramitochondrial Ca2+ and the mitochondrial Ca2+-uniporter (MCU) in the stimulation of mammalian oxidative phosphorylation. Journal of Biological Chemistry, 2020, 295, 10506.	1.6	3
4	Hexokinase II dissociation alone cannot account for changes in heart mitochondrial function, morphology and sensitivity to permeability transition pore opening following ischemia. PLoS ONE, 2020, 15, e0234653.	1.1	6
5	Title is missing!. , 2020, 15, e0234653.		Ο
6	Title is missing!. , 2020, 15, e0234653.		0
7	Title is missing!. , 2020, 15, e0234653.		0
8	Title is missing!. , 2020, 15, e0234653.		0
9	Title is missing!. , 2020, 15, e0234653.		0
10	Title is missing!. , 2020, 15, e0234653.		0
11	Title is missing!. , 2020, 15, e0234653.		0
12	Title is missing!. , 2020, 15, e0234653.		0
13	The role of succinate and ROS in reperfusion injury – A critical appraisal. Journal of Molecular and Cellular Cardiology, 2017, 110, 1-14.	0.9	133
14	Real-Time Fluorescence Measurements of ROS and [Ca2+] in Ischemic / Reperfused Rat Hearts: Detectable Increases Occur only after Mitochondrial Pore Opening and Are Attenuated by Ischemic Preconditioning. PLoS ONE, 2016, 11, e0167300.	1.1	44
15	The anti-tumour agent lonidamine is a potent inhibitor of the mitochondrial pyruvate carrier and plasma membrane monocarboxylate transporters. Biochemical Journal, 2016, 473, 929-936.	1.7	93
16	Quantification of active mitochondrial permeability transition pores using GNX-4975 inhibitor titrations provides insights into molecular identity. Biochemical Journal, 2016, 473, 1129-1140.	1.7	36
17	Mechanism of antineoplastic activity of lonidamine. Biochimica Et Biophysica Acta: Reviews on Cancer, 2016, 1866, 151-162.	3.3	107
18	Differences in the profile of protection afforded by TRO40303 and mild hypothermia in models of cardiac ischemia/reperfusion injury. European Journal of Pharmacology, 2015, 760, 7-19.	1.7	26

ANDREW P HALESTRAP

#	Article	IF	CITATIONS
19	Identification of key binding site residues of MCT1 for AR-C155858 reveals the molecular basis of its isoform selectivity. Biochemical Journal, 2015, 466, 177-188.	1.7	35
20	The role of hexokinase in cardioprotection – mechanism and potential for translation. British Journal of Pharmacology, 2015, 172, 2085-2100.	2.7	47
21	The mitochondrial permeability transition: A current perspective on its identity and role in ischaemia/reperfusion injury. Journal of Molecular and Cellular Cardiology, 2015, 78, 129-141.	0.9	360
22	Hearts from Mice Fed a Non-Obesogenic High-Fat Diet Exhibit Changes in Their Oxidative State, Calcium and Mitochondria in Parallel with Increased Susceptibility to Reperfusion Injury. PLoS ONE, 2014, 9, e100579.	1.1	50
23	The C Ring of the F1Fo ATP Synthase Forms the Mitochondrial Permeability Transition Pore: A Critical Appraisal. Frontiers in Oncology, 2014, 4, 234.	1.3	58
24	The â€~mitoflash' probe cpYFP does not respond to superoxide. Nature, 2014, 514, E12-E14.	13.7	109
25	The SLC16 gene family – Structure, role and regulation in health and disease. Molecular Aspects of Medicine, 2013, 34, 337-349.	2.7	526
26	Monocarboxylic Acid Transport. , 2013, 3, 1611-1643.		274
27	Hexokinase II and Reperfusion Injury. Circulation Research, 2013, 112, e3-7.	2.0	21
28	The monocarboxylate transporter family—Role and regulation. IUBMB Life, 2012, 64, 109-119.	1.5	545
29	The monocarboxylate transporter family—Structure and functional characterization. IUBMB Life, 2012, 64, 1-9.	1.5	536
30	The role of oxidized cytochrome <i>c</i> in regulating mitochondrial reactive oxygen species production and its perturbation in ischaemia. Biochemical Journal, 2011, 436, 493-505.	1.7	110
31	AR-C155858 is a potent inhibitor of monocarboxylate transporters MCT1 and MCT2 that binds to an intracellular site involving transmembrane helices 7–10. Biochemical Journal, 2010, 425, 523-530.	1.7	206
32	A pore way to die: the role of mitochondria in reperfusion injury and cardioprotection. Biochemical Society Transactions, 2010, 38, 841-860.	1.6	271
33	Consecutive pharmacological activation of PKA and PKC mimics the potent cardioprotection of temperature preconditioning. Cardiovascular Research, 2010, 88, 324-333.	1.8	28
34	The role of the mitochondrial permeability transition pore in heart disease. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 1402-1415.	0.5	311
35	Mitochondrial calcium in health and disease. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 1289-1290.	0.5	33
36	Mitochondria and reperfusion injury of the heart—A holey death but not beyond salvation. Journal of Bioenergetics and Biomembranes, 2009, 41, 113-121.	1.0	101

#	Article	IF	CITATIONS
37	What is the mitochondrial permeability transition pore?. Journal of Molecular and Cellular Cardiology, 2009, 46, 821-831.	0.9	797
38	Determination of the rate of K+ movement through potassium channels in isolated rat heart and liver mitochondria. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 540-548.	0.5	45
39	The Mitochondrial Phosphate Carrier Interacts with Cyclophilin D and May Play a Key Role in the Permeability Transition. Journal of Biological Chemistry, 2008, 283, 26312-26323.	1.6	273
40	Inhibition of Mitochondrial Permeability Transition Pore Opening by Ischemic Preconditioning Is Probably Mediated by Reduction of Oxidative Stress Rather Than Mitochondrial Protein Phosphorylation. Circulation Research, 2008, 102, 1082-1090.	2.0	148
41	Urocortin prevents mitochondrial permeability transition in response to reperfusion injury indirectly by reducing oxidative stress. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H928-H938.	1.5	60
42	The role of mitochondria in protection of the heart by preconditioning. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 1007-1031.	0.5	337
43	Temperature preconditioning of isolated rat hearts - a potent cardioprotective mechanism involving a reduction in oxidative stress and inhibition of the mitochondrial permeability transition pore. Journal of Physiology, 2007, 581, 1147-1161.	1.3	79
44	Propofol Is Cardioprotective in a Clinically Relevant Model of Normothermic Blood Cardioplegic Arrest and Cardiopulmonary Bypass. Experimental Biology and Medicine, 2005, 230, 413-420.	1.1	60
45	Dual role for the ADP/ATP translocator?. Nature, 2004, 430, 984-984.	13.7	98
46	Mitochondrial permeability transition pore opening during myocardial reperfusion—a target for cardioprotection. Cardiovascular Research, 2004, 61, 372-385.	1.8	1,036
47	The SLC16 gene family?from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Pflugers Archiv European Journal of Physiology, 2004, 447, 619-628.	1.3	876
48	Ischaemic Preconditioning Inhibits Opening of Mitochondrial Permeability Transition Pores in the Reperfused Rat Heart. Journal of Physiology, 2003, 549, 513-524.	1.3	295
49	The Adenine Nucleotide Translocase: A Central Component of the Mitochondrial Permeability Transition Pore and Key Player in Cell Death. Current Medicinal Chemistry, 2003, 10, 1507-1525.	1.2	454
50	Matrix volume measurements challenge the existence of diazoxide/glibencamide-sensitive KATP channels in rat mitochondria. Journal of Physiology, 2003, 547, 893-902.	1.3	155
51	Sanglifehrin A Acts as a Potent Inhibitor of the Mitochondrial Permeability Transition and Reperfusion Injury of the Heart by Binding to Cyclophilin-D at a Different Site from Cyclosporin A. Journal of Biological Chemistry, 2002, 277, 34793-34799.	1.6	327
52	The permeability transition pore complex: another view. Biochimie, 2002, 84, 153-166.	1.3	650
53	The effects of ischaemic preconditioning, diazoxide and 5â€hydroxydecanoate on rat heart mitochondrial volume and respiration. Journal of Physiology, 2002, 545, 961-974.	1.3	200
54	Confirmation of the interaction between the monocarboxylate transporter MCT1 and its ancillary protein CD147 using fluorescence resonance energy transfer. Biochemical Society Transactions, 2001, 29, A78-A78.	1.6	0

#	Article	IF	CITATIONS
55	The genomic structure of the human lactate transporters MCT1 and MCT2 and evidence for alternative promoters. Biochemical Society Transactions, 2001, 29, A78-A78.	1.6	0
56	Identification of critical cysteine residues whose oxidative cross-linking regulates the mitochondrial permeability transition pore. Biochemical Society Transactions, 2001, 29, A78-A78.	1.6	0
57	A novel postsynaptic density protein: the monocarboxylate transporter MCT2 is co-localized with Î-glutamate receptors in postsynaptic densities of parallel fiber-Purkinje cell synapses. Experimental Brain Research, 2001, 136, 523-534.	0.7	150
58	Cytochrome c release from isolated rat liver mitochondria can occur independently of outer-membrane rupture: possible role of contact sites. Biochemical Journal, 2000, 348, 343-350.	1.7	126
59	Apoptosis and the laws of thermodynamics. Nature Cell Biology, 2000, 2, E172-E172.	4.6	9
60	Characterisation of human monocarboxylate transporter 4 substantiates its role in lactic acid efflux from skeletal muscle. Journal of Physiology, 2000, 529, 285-293.	1.3	284
61	Isoform-specific regulation of the lactate transporters MCT1 and MCT4 by contractile activity. American Journal of Physiology - Endocrinology and Metabolism, 2000, 279, E1131-E1138.	1.8	93
62	Abundance and subcellular distribution of MCT1 and MCT4 in heart and fast-twitch skeletal muscles. American Journal of Physiology - Endocrinology and Metabolism, 2000, 278, E1067-E1077.	1.8	85
63	Reversal of permeability transition during recovery of hearts from ischemia and its enhancement by pyruvate. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 276, H496-H502.	1.5	84
64	The mitochondrial permeability transition: its molecular mechanism and role in reperfusion injury. Biochemical Society Symposia, 1999, 66, 181-203.	2.7	176
65	Effect of high-intensity exercise training on lactate/H ⁺ transport capacity in human skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 1999, 276, E255-E261.	1.8	138
66	Cyclosporin A and its nonimmunosuppressive analogue N-Me-Val-4-cyclosporin A mitigate glucose/oxygen deprivation-induced damage to rat cultured hippocampal neurons. European Journal of Neuroscience, 1999, 11, 3194-3198.	1.2	104
67	Lactate transport in skeletal muscle - role and regulation of the monocarboxylate transporter. Journal of Physiology, 1999, 517, 633-642.	1.3	345
68	The Mitochondrial Permeability Transition: Role in Ischemia/Reperfusion Injury. Sepsis, 1999, 2, 312-325.	0.5	2
69	The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochemical Journal, 1999, 343, 281-299.	1.7	1,138
70	Oxidative Stress, Thiol Reagents, and Membrane Potential Modulate the Mitochondrial Permeability Transition by Affecting Nucleotide Binding to the Adenine Nucleotide Translocase. Journal of Biological Chemistry, 1997, 272, 3346-3354.	1.6	525
71	Lactate Transport in Heart in Relation to Myocardial Ischemia. American Journal of Cardiology, 1997, 80, 17A-25A.	0.7	88
72	Chaotropic Agents and Increased Matrix Volume Enhance Binding of Mitochondrial Cyclophilin to the Inner Mitochondrial Membrane and Sensitize the Mitochondrial Permeability Transition to [Ca2+]Ââ€. Biochemistry, 1996, 35, 8172-8180.	1.2	108

ANDREW P HALESTRAP

#	Article	IF	CITATIONS
73	Studies of the membrane topology of the rat erythrocyte H+/lactate cotransporter (MCT1). Biochemical Journal, 1996, 320, 817-824.	1.7	120
74	Regulation of mitochondrial metabolism through changes in matrix volume. Biochemical Society Transactions, 1994, 22, 522-529.	1.6	107
75	Effects of tyrosine kinase inhibitors on protein kinase-independent systems. FEBS Letters, 1993, 316, 278-282.	1.3	47
76	Protection by Cyclosporin A of Ischemia/Reperfusion-Induced Damage in Isolated Rat Hearts. Journal of Molecular and Cellular Cardiology, 1993, 25, 1461-1469.	0.9	549
77	Mitochondrial calcium handling and oxidative stress. Biochemical Society Transactions, 1993, 21, 353-358.	1.6	78
78	Inhibition and labelling of the erythrocyte lactate transporter by stilbene disulphonates. Biochemical Society Transactions, 1990, 18, 1245-1246.	1.6	11
79	Reliability of the centrifugal filtration method for measuring mitochondrial matrix volumes. Biochemical Journal, 1988, 253, 622-623.	1.7	7
80	Purification of a 55 kDa mitochondrial protein by α-cyanocinnamate affinity chromatography. Biochemical Society Transactions, 1988, 16, 602-603.	1.6	2
81	HORMONALLY INDUCED CHANGES IN THE VOLUME OF HEPATOCYTES AND THEIR MITOCHONDRIA MEASURED IN SITU. Biochemical Society Transactions, 1981, 9, 136P-136P.	1.6	0
82	Phosphorylation of branched-chain 2-oxo acid dehydrogenase within intact mitochondria. Biochemical Society Transactions, 1980, 8, 374-374.	1.6	11
83	Stimulation of the respiratory chain of rat liver mitochondria between cytochrome c1 and cytochrome c by glucagon treatment of rats. Biochemical Journal, 1978, 172, 399-405.	1.7	50
84	The Mechanism of the Stimulation of Pyruvate Transport into Rat Liver Mitochondria by Glucagon. Biochemical Society Transactions, 1977, 5, 216-219.	1.6	15
85	Specific inhibition of pyruvate transport in rat liver mitochondria and human erythrocytes by α-cyano-4-hydroxycinnamate (<i>Short Communication</i>). Biochemical Journal, 1974, 138, 313-316.	3.2	354
86	Insulin and the regulation of adipose-tissue acetyl-coenzyme A carboxylase. Biochemical Journal, 1973, 132, 509-517.	3.2	167