List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1789339/publications.pdf Version: 2024-02-01

ANNA KH HIDSCH

#	Article	IF	CITATIONS
1	Towards the sustainable discovery and development of new antibiotics. Nature Reviews Chemistry, 2021, 5, 726-749.	13.8	439
2	Phosphate Recognition in Structural Biology. Angewandte Chemie - International Edition, 2007, 46, 338-352.	7.2	260
3	Dynamic combinatorial chemistry: a tool to facilitate the identification of inhibitors for protein targets. Chemical Society Reviews, 2015, 44, 2455-2488.	18.7	176
4	Concepts and Core Principles of Fragment-Based Drug Design. Molecules, 2019, 24, 4309.	1.7	115
5	From Wood to Tetrahydro-2-benzazepines in Three Waste-Free Steps: Modular Synthesis of Biologically Active Lignin-Derived Scaffolds. ACS Central Science, 2019, 5, 1707-1716.	5.3	82
6	Structureâ€Based Design of Inhibitors of the Aspartic Protease Endothiapepsin by Exploiting Dynamic Combinatorial Chemistry. Angewandte Chemie - International Edition, 2014, 53, 3259-3263.	7.2	71
7	Development of Inhibitors of the 2 <i>C</i> -Methyl- <scp>d</scp> -erythritol 4-Phosphate (MEP) Pathway Enzymes as Potential Anti-Infective Agents. Journal of Medicinal Chemistry, 2014, 57, 9740-9763.	2.9	71
8	Muscarinic receptors on airway mesenchymal cells: Novel findings for an ancient target. Pulmonary Pharmacology and Therapeutics, 2013, 26, 145-155.	1.1	70
9	Molecular Biodynamers: Dynamic Covalent Analogues of Biopolymers. Accounts of Chemical Research, 2017, 50, 376-386.	7.6	62
10	A new perspective on muscarinic receptor antagonism in obstructive airways diseases. Current Opinion in Pharmacology, 2013, 13, 316-323.	1.7	56
11	TGFâ€Î²â€induced profibrotic signaling is regulated in part by the WNT receptor Frizzledâ€8. FASEB Journal, 2016, 30, 1823-1835.	0.2	56
12	Fragment Linking and Optimization of Inhibitors of the Aspartic Protease Endothiapepsin: Fragmentâ€Based Drug Design Facilitated by Dynamic Combinatorial Chemistry. Angewandte Chemie - International Edition, 2016, 55, 9422-9426.	7.2	55
13	Biodynamers: Self-Organization-Driven Formation of Doubly Dynamic Proteoids. Journal of the American Chemical Society, 2012, 134, 4177-4183.	6.6	54
14	Airway and Extracellular Matrix Mechanics in COPD. Frontiers in Physiology, 2015, 6, 346.	1.3	53
15	Exploiting Specific Interactions toward Next-Generation Polymeric Drug Transporters. Journal of the American Chemical Society, 2013, 135, 1711-1714.	6.6	48
16	Citraconate inhibits ACOD1 (IRG1) catalysis, reduces interferon responses and oxidative stress, and modulates inflammation and cell metabolism. Nature Metabolism, 2022, 4, 534-546.	5.1	48
17	Druggability of the enzymes of the non-mevalonate-pathway. Drug Discovery Today, 2013, 18, 1256-1262.	3.2	46
18	Tiotropium attenuates IL-13-induced goblet cell metaplasia of human airway epithelial cells. Thorax, 2015, 70, 668-676.	2.7	46

#	Article	IF	CITATIONS
19	Nonphosphate Inhibitors of IspE Protein, a Kinase in the Non-Mevalonate Pathway for Isoprenoid Biosynthesis and a Potential Target for Antimalarial Therapy. ChemMedChem, 2007, 2, 806-810.	1.6	43
20	Mastering the Gram-negative bacterial barrier – Chemical approaches to increase bacterial bioavailability of antibiotics. Advanced Drug Delivery Reviews, 2021, 172, 339-360.	6.6	42
21	Total synthesis, stereochemical elucidation and biological evaluation of Ac2SGL; a 1,3-methyl branched sulfoglycolipid from Mycobacterium tuberculosis. Chemical Science, 2013, 4, 709-716.	3.7	40
22	Inhibitors of the kinase IspE: structure–activity relationships and co-crystal structure analysis. Organic and Biomolecular Chemistry, 2008, 6, 2719.	1.5	39
23	Combination therapy of tiotropium and ciclesonide attenuates airway inflammation and remodeling in a guinea pig model of chronic asthma. Respiratory Research, 2016, 17, 13.	1.4	38
24	Double Conjugate Addition of Dithiols to Propargylic Carbonyl Systems To Generate Protected 1,3-Dicarbonyl Compounds. Journal of Organic Chemistry, 2006, 71, 2715-2725.	1.7	36
25	Bioconjugates to specifically render inhibitorswater-soluble. Soft Matter, 2010, 6, 88-91.	1.2	36
26	Integrins: therapeutic targets in airway hyperresponsiveness and remodelling?. Trends in Pharmacological Sciences, 2014, 35, 567-574.	4.0	36
27	Targeting arginase and nitric oxide metabolism in chronic airway diseases and their co-morbidities. Current Opinion in Pharmacology, 2018, 40, 126-133.	1.7	36
28	A New PqsR Inverse Agonist Potentiates Tobramycin Efficacy to Eradicate <i>Pseudomonas aeruginosa</i> Biofilms. Advanced Science, 2021, 8, e2004369.	5.6	34
29	Anti-inflammatory effects of targeted lung denervation in patients with COPD. European Respiratory Journal, 2015, 46, 1489-1492.	3.1	33
30	Proteinâ€Templated Dynamic Combinatorial Chemistry: Brief Overview and Experimental Protocol. European Journal of Organic Chemistry, 2019, 2019, 3581-3590.	1.2	33
31	Molecular insight into specific 14-3-3 modulators: Inhibitors and stabilisers of protein–protein interactions of 14-3-3. European Journal of Medicinal Chemistry, 2017, 136, 573-584.	2.6	29
32	p42/p44 MAP kinase activation is localized to caveolae-free membrane domains in airway smooth muscle. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 292, L1163-L1172.	1.3	27
33	Synthesis and Characterization of Cytidine Derivatives that Inhibit the Kinase IspE of the Nonâ€Mevalonate Pathway for Isoprenoid Biosynthesis. ChemMedChem, 2008, 3, 91-101.	1.6	27
34	Glucansucrase (mutant) enzymes from Lactobacillus reuteri 180 efficiently transglucosylate Stevia component rebaudioside A, resulting in a superior taste. Scientific Reports, 2018, 8, 1516.	1.6	27
35	<i>N</i> -Aryl-3-mercaptosuccinimides as Antivirulence Agents Targeting <i>Pseudomonas aeruginosa</i> Elastase and <i>Clostridium</i> Collagenases. Journal of Medicinal Chemistry, 2020, 63, 8359-8368.	2.9	27
36	Small airway hyperresponsiveness in COPD: relationship between structure and function in lung slices. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 316, L537-L546.	1.3	26

#	Article	IF	CITATIONS
37	Back to the future: re-establishing guinea pig <i>in vivo</i> asthma models. Clinical Science, 2020, 134, 1219-1242.	1.8	26
38	Muscarinic M ₃ receptors on structural cells regulate cigarette smoke-induced neutrophilic airway inflammation in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L96-L103.	1.3	25
39	Pentapeptideâ€rich peptidoglycan at the <i>Bacillus subtilis</i> cellâ€division site. Molecular Microbiology, 2017, 104, 319-333.	1.2	25
40	Structureâ€Based Design of Potent Smallâ€Molecule Binders to the Sâ€Component of the ECF Transporter for Thiamine. ChemBioChem, 2015, 16, 819-826.	1.3	24
41	Validation of a homology model of Mycobacterium tuberculosis DXS: rationalization of observed activities of thiamine derivatives as potent inhibitors of two orthologues of DXS. Organic and Biomolecular Chemistry, 2015, 13, 11263-11277.	1.5	24
42	Fighting Malaria: Structure-Guided Discovery of Nonpeptidomimetic Plasmepsin Inhibitors. Journal of Medicinal Chemistry, 2015, 58, 5151-5163.	2.9	24
43	Enhancing glycan stability <i>via</i> site-selective fluorination: modulating substrate orientation by molecular design. Chemical Science, 2021, 12, 1286-1294.	3.7	24
44	The isoprenoid-precursor dependence of Plasmodium spp Natural Product Reports, 2012, 29, 721.	5.2	23
45	Inverting Small Molecule–Protein Recognition by the Fluorine <i>Gauche</i> Effect: Selectivity Regulated by Multiple H→F Bioisosterism. Angewandte Chemie - International Edition, 2019, 58, 10990-10994.	7.2	23
46	Low-Dimensional Metal–Organic Coordination Structures on Graphene. Journal of Physical Chemistry C, 2019, 123, 12730-12735.	1.5	22
47	Recent Patents in Allergy/Immunology: Use of arginase inhibitors in the treatment of asthma and allergic rhinitis. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 1206-1208.	2.7	22
48	A pro-inflammatory role for the Frizzled-8 receptor in chronic bronchitis. Thorax, 2016, 71, 312-322.	2.7	21
49	Novel Compounds Targeting the RNA-Binding Protein HuR. Structure-Based Design, Synthesis, and Interaction Studies. ACS Medicinal Chemistry Letters, 2019, 10, 615-620.	1.3	21
50	Hit-optimization using target-directed dynamic combinatorial chemistry: development of inhibitors of the anti-infective target 1-deoxy- <scp>d</scp> -xylulose-5-phosphate synthase. Chemical Science, 2021, 12, 7775-7785.	3.7	21
51	Fragmentverknüpfung und â€optimierung von Hemmstoffen der Aspartylprotease Endothiapepsin: Fragmentbasiertes Wirkstoffdesign beschleunigt durch dynamische kombinatorische Chemie. Angewandte Chemie, 2016, 128, 9569-9574.	1.6	21
52	Compounds Interfering with Embryonic Lethal Abnormal Vision (ELAV) Protein–RNA Complexes: An Avenue for Discovering New Drugs. Journal of Medicinal Chemistry, 2017, 60, 8257-8267.	2.9	20
53	Fine-tuning Nanocarriers Specifically toward Cargo: A Competitive Study on Solubilizing Related Photosensitizers for Photodynamic Therapy. Bioconjugate Chemistry, 2017, 28, 760-767.	1.8	20
54	Fragment growing exploiting dynamic combinatorial chemistry of inhibitors of the aspartic protease endothiapepsin. MedChemComm, 2015, 6, 1267-1271.	3.5	19

#	Article	IF	CITATIONS
55	A rapid synthesis of low-nanomolar divalent LecA inhibitors in four linear steps from <scp>d</scp> -galactose pentaacetate. Chemical Communications, 2020, 56, 8822-8825.	2.2	19
56	Energy oupling Factor Transporters as Novel Antimicrobial Targets. Advanced Therapeutics, 2019, 2, 1800066.	1.6	18
57	Discovery of Small-Molecule Stabilizers of 14-3-3 Protein–Protein Interactions via Dynamic Combinatorial Chemistry. ACS Medicinal Chemistry Letters, 2020, 11, 1041-1046.	1.3	18
58	De novo fragment-based design of inhibitors of DXS guided by spin-diffusion-based NMR spectroscopy. Chemical Science, 2014, 5, 3543-3551.	3.7	17
59	Micro-rheological properties of lung homogenates correlate with infection severity in a mouse model of Pseudomonas aeruginosa lung infection. Scientific Reports, 2020, 10, 16502.	1.6	17
60	7-Hydroxycoumarins Are Affinity-Based Fluorescent Probes for Competitive Binding Studies of Macrophage Migration Inhibitory Factor. Journal of Medicinal Chemistry, 2020, 63, 11920-11933.	2.9	17
61	Total Synthesis of (â~)â€Doliculide, Structure–Activity Relationship Studies and Its Binding to Fâ€Actin. ChemBioChem, 2012, 13, 2537-2548.	1.3	16
62	<scp>l</scp> -Thyroxine promotes a proliferative airway smooth muscle phenotype in the presence of TGF-β1. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L301-L306.	1.3	16
63	Fragmentâ€Based Drug Design Facilitated by Proteinâ€Templated Click Chemistry: Fragment Linking and Optimization of Inhibitors of the Aspartic Protease Endothiapepsin. Chemistry - A European Journal, 2016, 22, 14826-14830.	1.7	16
64	Insight into the complete substrate-binding pocket of ThiT by chemical and genetic mutations. MedChemComm, 2017, 8, 1121-1130.	3.5	16
65	Druggability Assessment of Targets Used in Kinetic Target-Guided Synthesis. Journal of Medicinal Chemistry, 2018, 61, 9395-9409.	2.9	16
66	Validating the 1,2-Difluoro Motif As a Hybrid Bioisostere of CF3 and Et Using Matrix Metalloproteinases As Structural Probes. Journal of Medicinal Chemistry, 2020, 63, 6225-6237.	2.9	15
67	Proteinâ€Templated Hit Identification through an Ugi Fourâ€Component Reaction**. Chemistry - A European Journal, 2020, 26, 14585-14593.	1.7	15
68	Proteoid Dynamers with Tunable Properties. Advanced Functional Materials, 2016, 26, 6297-6305.	7.8	14
69	Novel 15-Lipoxygenase-1 Inhibitor Protects Macrophages from Lipopolysaccharide-Induced Cytotoxicity. Journal of Medicinal Chemistry, 2019, 62, 4624-4637.	2.9	14
70	Surface state tunable energy and mass renormalization from homothetic quantum dot arrays. Nanoscale, 2019, 11, 23132-23138.	2.8	14
71	Semisynthesis and biological evaluation of amidochelocardin derivatives as broad-spectrum antibiotics. European Journal of Medicinal Chemistry, 2020, 188, 112005.	2.6	14
72	Phosphonate as a Stable Zincâ€Binding Group for "Pathoblocker―Inhibitors of Clostridial Collagenase H (ColH). ChemMedChem, 2021, 16, 1257-1267.	1.6	14

#	Article	IF	CITATIONS
73	Imidazole―and Benzimidazoleâ€Based Inhibitors of the Kinase IspE: Targeting the Substrateâ€Binding Site and the Triphosphateâ€Binding Loop of the ATP Site. European Journal of Organic Chemistry, 2013, 2013, 1068-1079.	1.2	13
74	Structure-Based Optimization of Inhibitors of the Aspartic Protease Endothiapepsin. International Journal of Molecular Sciences, 2015, 16, 19184-19194.	1.8	13
75	Substrateâ€Inspired Fragment Merging and Growing Affords Efficacious LasB Inhibitors. Angewandte Chemie - International Edition, 2022, 61, .	7.2	13
76	The novel compound Sul-121 inhibits airway inflammation and hyperresponsiveness in experimental models of chronic obstructive pulmonary disease. Scientific Reports, 2016, 6, 26928.	1.6	12
77	Dynamic Combinatorial Chemistry to Identify Binders of ThiT, an S omponent of the Energy oupling Factor Transporter for Thiamine. ChemMedChem, 2017, 12, 1693-1696.	1.6	12
78	DXS as a target for structure-based drug design. Future Medicinal Chemistry, 2017, 9, 1277-1294.	1.1	12
79	Exploration of ligand binding modes towards the identification of compounds targeting HuR: a combined STD-NMR and Molecular Modelling approach. Scientific Reports, 2018, 8, 13780.	1.6	12
80	Laminin α4 contributes to airway remodeling and inflammation in asthma. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 317, L768-L777.	1.3	12
81	A combinatorial approach for the discovery of drug-like inhibitors of 15-lipoxygenase-1. European Journal of Medicinal Chemistry, 2019, 174, 45-55.	2.6	12
82	The Non-Mevalonate Pathway to Isoprenoid Biosynthesis: A Potential Source of New Drug Targets. Chimia, 2008, 62, 226-230.	0.3	11
83	Combinatorial Screening for Specific Drug Solubilizers with Switchable Release Profiles. Macromolecular Bioscience, 2015, 15, 82-89.	2.1	11
84	Designed Spiroketal Protein Modulation. Angewandte Chemie - International Edition, 2017, 56, 5480-5484.	7.2	11
85	Identification of N,N-arylalkyl-picolinamide derivatives targeting the RNA-binding protein HuR, by combining biophysical fragment-screening and molecular hybridization. Bioorganic Chemistry, 2021, 116, 105305.	2.0	11
86	<i>N</i> -Aryl Mercaptopropionamides as Broad-Spectrum Inhibitors of Metallo-β-Lactamases. Journal of Medicinal Chemistry, 2022, 65, 3913-3922.	2.9	11
87	A hydrogel-based in vitro assay for the fast prediction of antibiotic accumulation in Gram-negative bacteria. Materials Today Bio, 2020, 8, 100084.	2.6	10
88	Design and synthesis of thiamine analogues to study their binding to the ECF transporter for thiamine in bacteria. MedChemComm, 2016, 7, 966-971.	3.5	9
89	Identification of a 1-deoxy-D-xylulose-5-phosphate synthase (DXS) mutant with improved crystallographic properties. Biochemical and Biophysical Research Communications, 2021, 539, 42-47.	1.0	9
90	Bacteriomimetic Liposomes Improve Antibiotic Activity of a Novel Energy-Coupling Factor Transporter Inhibitor. Pharmaceutics, 2022, 14, 4.	2.0	9

#	Article	IF	CITATIONS
91	Harnessing dynamic combinatorial chemistry in the search for new ligands for protein targets. Future Medicinal Chemistry, 2015, 7, 2095-2098.	1.1	8
92	Phage Display on the Antiâ€infective Target 1â€Deoxyâ€ <scp>d</scp> â€xyluloseâ€5â€phosphate Synthase Leac Acceptor–Substrate Competitive Peptidic Inhibitor. ChemBioChem, 2018, 19, 58-65.	ls to an 1.3	8
93	BOPC1 Enantiomers Preparation and HuR Interaction Study. From Molecular Modeling to a Curious DEEP-STD NMR Application. ACS Medicinal Chemistry Letters, 2020, 11, 883-888.	1.3	8
94	Unveiling Adatoms in On-Surface Reactions: Combining Scanning Probe Microscopy with van't Hoff Plots. Journal of Physical Chemistry C, 2021, 125, 9847-9854.	1.5	8
95	First crystal structures of 1-deoxy-d-xylulose 5-phosphate synthase (DXPS) from Mycobacterium tuberculosis indicate a distinct mechanism of intermediate stabilization. Scientific Reports, 2022, 12, 7221.	1.6	8
96	Exploring the Ribose Subâ€Pocket of the Substrateâ€Binding Site in <i>Escherichia coli</i> IspE: Structureâ€Based Design, Synthesis, and Biological Evaluation of Cytosines and Cytosine Analogues. European Journal of Organic Chemistry, 2012, 2012, 3278-3287.	1.2	7
97	Theoretical and Structural Analysis of Long Cĩ£¿C Bonds in the Adducts of Polycyanoethylene and Anthracene Derivatives and Their Connection to the Reversibility of Diels–Alder Reactions. Chemistry - A European Journal, 2014, 20, 1073-1080.	1.7	7
98	Donepezil–melatonin hybrids as butyrylcholinesterase inhibitors: Improving binding affinity through varying mode of linking fragments. Archiv Der Pharmazie, 2018, 351, e1800194.	2.1	7
99	Design and Synthesis of Bioisosteres of Acylhydrazones as Stable Inhibitors of the Aspartic Protease Endothiapepsin. ChemMedChem, 2018, 13, 2266-2270.	1.6	7
100	Second M 3 muscarinic receptor binding site contributes to bronchoprotection by tiotropium. British Journal of Pharmacology, 2019, 176, 2864-2876.	2.7	7
101	"Clicking" fragment leads to novel dual-binding cholinesterase inhibitors. Bioorganic and Medicinal Chemistry, 2021, 42, 116269.	1.4	7
102	Assessment of the rules related to gaining activity against Gram-negative bacteria. RSC Medicinal Chemistry, 2021, 12, 593-601.	1.7	7
103	Structure-Based Design of α-Substituted Mercaptoacetamides as Inhibitors of the Virulence Factor LasB from <i>Pseudomonas aeruginosa</i> . ACS Infectious Diseases, 2022, 8, 1010-1021.	1.8	7
104	Bicyclic enol cyclocarbamates inhibit penicillin-binding proteins. Organic and Biomolecular Chemistry, 2017, 15, 894-910.	1.5	6
105	Delivery system for budesonide based on lipid-DNA. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 130, 123-127.	2.0	6
106	Potential Dental Biofilm Inhibitors: Dynamic Combinatorial Chemistry Affords Sugarâ€Based Molecules that Target Bacterial Glucosyltransferase. ChemMedChem, 2021, 16, 113-123.	1.6	6
107	<i>N</i> -Aryl mercaptoacetamides as potential multi-target inhibitors of metallo-β-lactamases (MBLs) and the virulence factor LasB from <i>Pseudomonas aeruginosa</i> . RSC Medicinal Chemistry, 2021, 12, 1698-1708.	1.7	6
108	Design, synthesis, and biological evaluation of novel benzimidazole derivatives as sphingosine kinase 1 inhibitor. Archiv Der Pharmazie, 2021, 354, e2100080.	2.1	6

#	Article	IF	CITATIONS
109	Saccharide ontaining Dynamic Proteoids. Chemistry - A European Journal, 2017, 23, 16162-16166.	1.7	5
110	Lipidâ€ÐNAs as Solubilizers of <i>m</i> THPC. Chemistry - A European Journal, 2018, 24, 798-802.	1.7	5
111	Rational Adaptation of L3MBTL1 Inhibitors to Create Smallâ€Molecule Cbx7 Antagonists. ChemMedChem, 2019, 14, 1444-1456.	1.6	5
112	Optimized Inhibitors of MDM2 via an Attempted Proteinâ€īemplated Reductive Amination. ChemMedChem, 2020, 15, 370-375.	1.6	5
113	Evaluation of Bacterial RNA Polymerase Inhibitors in a Staphylococcus aureus-Based Wound Infection Model in SKH1 Mice. ACS Infectious Diseases, 2020, 6, 2573-2581.	1.8	5
114	An Efficient Way to Screen Inhibitors of Energy-Coupling Factor (ECF) Transporters in a Bacterial Uptake Assay. International Journal of Molecular Sciences, 2022, 23, 2637.	1.8	5
115	Furoates and thenoates inhibit pyruvate dehydrogenase kinase 2 allosterically by binding to its pyruvate regulatory site. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 170-175.	2.5	4
116	Reversible immobilization of a protein to a gold surface through multiple host–guest interactions. Journal of Materials Chemistry B, 2019, 7, 6148-6155.	2.9	4
117	Comparing the Selfâ€Assembly of Sexiphenylâ€Dicarbonitrile on Graphite and Graphene on Cu(111). Chemistry - A European Journal, 2019, 25, 5065-5070.	1.7	4
118	Rapid Discovery of Aspartyl Protease Inhibitors Using an Anchoring Approach. ChemMedChem, 2020, 15, 680-684.	1.6	4
119	pH-Dependent morphology and optical properties of lysine-derived molecular biodynamers. Materials Chemistry Frontiers, 2020, 4, 905-909.	3.2	4
120	A synthetic peptide as an allosteric inhibitor of human arginase I and II. Molecular Biology Reports, 2021, 48, 1959-1966.	1.0	4
121	Effects of (a Combination of) the Beta2-Adrenoceptor Agonist Indacaterol and the Muscarinic Receptor Antagonist Glycopyrrolate on Intrapulmonary Airway Constriction. Cells, 2021, 10, 1237.	1.8	4
122	Targeting the IspD Enzyme in the MEP Pathway: Identification of a Novel Fragment Class. ChemMedChem, 2021, , e202100679.	1.6	4
123	Inhibition of Collagenase Q1 of <i>Bacillus cereus</i> as a Novel Antivirulence Strategy for the Treatment of Skinâ€Wound Infections. Advanced Therapeutics, 2022, 5, 2100222.	1.6	4
124	Replacement of an Indole Scaffold Targeting Human 15â€Lipoxygenaseâ€1 Using Combinatorial Chemistry. Helvetica Chimica Acta, 2019, 102, e1900040.	1.0	3
125	Mapping Arginase Expression with ¹⁸ F-Fluorinated Late-Generation Arginase Inhibitors Derived from Quaternary α-Amino Acids. Journal of Nuclear Medicine, 2021, 62, 1163-1170.	2.8	3
126	Structure-Guided Optimization of Small-Molecule Folate Uptake Inhibitors Targeting the Energy-Coupling Factor Transporters. Journal of Medicinal Chemistry, 2022, 65, 8869-8880.	2.9	3

#	Article	IF	CITATIONS
127	Metal-ion-induced shape switching: Stereoselective formation of a dinuclear Hg(II) double helicate from a hydrazonobis(acylhydrazone) ligand. Polyhedron, 2012, 41, 40-43.	1.0	2
128	Dynamic Proteoids Generated From Dipeptideâ€Based Monomers. Macromolecular Rapid Communications, 2018, 39, e1800099.	2.0	2
129	Synthesis and Biological Evaluation of Novel 2-Substituted ÂAnalogues of (–)-Pentenomycin I. Synlett, 2020, 31, 475-481.	1.0	2
130	Disruption of AKAP-PKA Interaction Induces Hypercontractility With Concomitant Increase in Proliferation Markers in Human Airway Smooth Muscle. Frontiers in Cell and Developmental Biology, 2020, 8, 165.	1.8	2
131	Search for the Active Ingredients from a 2â€Aminothiazole DMSO Stock Solution with Antimalarial Activity. ChemMedChem, 2021, 16, 2089-2093.	1.6	2
132	Design and Synthesis of Novel Bis-Imidazolyl Phenyl Butadiyne Derivatives as HCV NS5A Inhibitors. Pharmaceuticals, 2022, 15, 632.	1.7	2
133	Designed Spiroketal Protein Modulation. Angewandte Chemie, 2017, 129, 5572-5576.	1.6	1
134	Frontispiece: Proteinâ€Templated Hit Identification through an Ugi Fourâ€Component Reaction. Chemistry - A European Journal, 2020, 26, .	1.7	1
135	Reply to: "Arginase inhibitors: An alternative in treatment of obese asthma?― Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 1527-1528.	2.7	1
136	François Diederich – In Memoriam**. ChemMedChem, 2021, 16, 11-13.	1.6	1
137	Redesigning of the cap conformation and symmetry of the diphenylethyne core to yield highly potent pan-genotypic NS5A inhibitors with high potency and high resistance barrier. European Journal of Medicinal Chemistry, 2022, 229, 114034.	2.6	1
138	A doubly hermaphroditic chiral crown ether. CrystEngComm, 2014, 16, 5984-5988.	1.3	0
139	Supramolecular Chemistry … and Beyond. Angewandte Chemie - International Edition, 2015, 54, 11013-11014.	7.2	Ο
140	Towards the Modulation of RNA-Binding Proteins: New Compounds Targeting Protein HuR. Proceedings (mdpi), 2019, 22, .	0.2	0
141	Epac as a novel relaxant factor in airway smooth muscle. FASEB Journal, 2010, 24, .	0.2	0
142	Allergenâ€induced airway constriction in guinea pig lung slices is attenuated by arginase inhibition via increased nitric oxide production. FASEB Journal, 2012, 26, 1061.2.	0.2	0
143	Epac2 and PLC Îμ contribute to the inflammatory response to cigarette smoke in vivo. FASEB Journal, 2013, 27, 1107.7.	0.2	0
144	Role for Aâ€kinase anchoring proteins in cigarette smokeâ€induced barrier dysfunction. FASEB Journal, 2013, 27, 1107.6.	0.2	0

#	Article	IF	CITATIONS
145	Substrateâ€inspired fragment merging and growing affords efficacious LasB inhibitors. Angewandte Chemie, 0, , .	1.6	0