Antonio Rafael SÃ;nchez-RodrÃ-guez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1789207/publications.pdf

Version: 2024-02-01

ANTONIO RAFAEL

#	Article	IF	CITATIONS
1	Combining targeted grass traits with red clover improves grassland performance and reduces need for nitrogen fertilisation. European Journal of Agronomy, 2022, 133, 126433.	4.1	3
2	Wheat and Maize Grown on Two Contrasting Zinc-deficient Calcareous Soils Respond Differently to Soil and Foliar Application of Zinc. Journal of Soil Science and Plant Nutrition, 2022, 22, 1718-1731.	3.4	9
3	Quantifying citrate-enhanced phosphate root uptake using microdialysis. Plant and Soil, 2021, 461, 69-89.	3.7	20
4	Zinc biofortification strategies for wheat grown on calcareous Vertisols in southern Spain: application method and rate. Plant and Soil, 2021, 462, 125-140.	3.7	7
5	Combining P and Zn fertilization to enhance yield and grain quality in maize grown on Mediterranean soils. Scientific Reports, 2021, 11, 7427.	3.3	12
6	Effects of entomopathogenic fungi on durum wheat nutrition and growth in the field. European Journal of Agronomy, 2021, 128, 126282.	4.1	4
7	Industrial saline wastewater in a corn-soybean rotation to enhance crop yield without compromising soil health in a subtropical soil. Journal of Environmental Management, 2021, 296, 113341.	7.8	3
8	Optimizing wheat seed treatment with entomopathogenic fungi for improving plant growth at early development stages. Spanish Journal of Agricultural Research, 2021, 19, e1004.	0.6	4
9	Photochemical emission and fixation of NOX gases in soils. Science of the Total Environment, 2020, 702, 134982.	8.0	13
10	Adjusting <i>P</i> -K Fertilization and Liming Strategies to Enhance Yield of Cherry Tomato Plants Grown on an Oxisol. Communications in Soil Science and Plant Analysis, 2020, 51, 1736-1746.	1.4	2
11	Soil Nutrients Effects on the Performance of Durum Wheat Inoculated with Entomopathogenic Fungi. Agronomy, 2020, 10, 589.	3.0	8
12	Effects of entomopathogenic fungi on growth and nutrition in wheat grown on two calcareous soils: Influence of the fungus application method. Annals of Applied Biology, 2020, 177, 26-40.	2.5	7
13	Enhancing Wheat and Soybean Yields in a Subtropical Oxisol Through Effective P Fertilization Strategies. Journal of Soil Science and Plant Nutrition, 2020, 20, 1605-1613.	3.4	4
14	Application of Bayesian statistics to estimate nitrous oxide emission factors of three nitrogen fertilisers on UK grasslands. Environment International, 2019, 128, 362-370.	10.0	23
15	Assessing the benefits and wider costs of different N fertilisers for grassland agriculture. Archives of Agronomy and Soil Science, 2019, 65, 625-639.	2.6	14
16	Agroecosystem resilience in response to extreme winter flooding. Agriculture, Ecosystems and Environment, 2019, 279, 1-13.	5.3	13
17	Typology of extreme flood event leads to differential impacts on soil functioning. Soil Biology and Biochemistry, 2019, 129, 153-168.	8.8	23
18	Extreme flood events at higher temperatures exacerbate the loss of soil functionality and trace gas emissions in grassland. Soil Biology and Biochemistry, 2019, 130, 227-236.	8.8	29

ANTONIO RAFAEL

#	Article	IF	CITATIONS
19	Chromium from Hydrolyzed Leather Affects Soybean Growth and Nodulation. Pedosphere, 2019, 29, 95-101.	4.0	4
20	Comparative effects of prolonged freshwater and saline flooding on nitrogen cycling in an agricultural soil. Applied Soil Ecology, 2018, 125, 56-70.	4.3	23
21	An endophytic Beauveria bassiana strain increases spike production in bread and durum wheat plants and effectively controls cotton leafworm (Spodoptera littoralis) larvae. Biological Control, 2018, 116, 90-102.	3.0	115
22	Microbial competition for nitrogen and carbon is as intense in the subsoil as in the topsoil. Soil Biology and Biochemistry, 2018, 117, 72-82.	8.8	120
23	Advanced Processing of Food Waste Based Digestate for Mitigating Nitrogen Losses in a Winter Wheat Crop. Frontiers in Sustainable Food Systems, 2018, 2, .	3.9	22
24	Redefining the dose of the entomopathogenic fungus Metarhizium brunneum (Ascomycota,) Tj ETQq0 0 0 rgBT /0 Plant and Soil, 2017, 418, 387-404.	Overlock 1 3.7	10 Tf 50 547 32
25	Waste Water Treatment. , 2017, , 352-362.		4
26	Phosphorus reduces the zinc concentration in cereals potâ€grown on calcareous Vertisols from southern Spain. Journal of the Science of Food and Agriculture, 2017, 97, 3427-3432.	3.5	28
27	Crop residues exacerbate the negative effects of extreme flooding on soil quality. Biology and Fertility of Soils, 2017, 53, 751-765.	4.3	15
28	Entomopathogenic fungi-based mechanisms for improved Fe nutrition in sorghum plants grown on calcareous substrates. PLoS ONE, 2017, 12, e0185903.	2.5	47
29	The entomopathogenic fungus Metarhizium brunneum: a tool for alleviating Fe chlorosis. Plant and Soil, 2016, 406, 295-310.	3.7	23
30	Diffusion and uptake of phosphorus, and root development of corn seedlings, in three contrasting subtropical soils under conventional tillage or no-tillage. Biology and Fertility of Soils, 2016, 52, 203-210.	4.3	30
31	Beauveria bassiana : An entomopathogenic fungus alleviates Fe chlorosis symptoms in plants grown on calcareous substrates. Scientia Horticulturae, 2015, 197, 193-202.	3.6	38
32	The severity of iron chlorosis in sensitive plants is related to soil phosphorus levels. Journal of the Science of Food and Agriculture, 2014, 94, 2766-2773.	3.5	10
33	Organic acids alleviate iron chlorosis in chickpea grown on two p-fertilized soils. Journal of Soil Science and Plant Nutrition, 2014, , 35-46.	3.4	6
34	Phosphate aggravates iron chlorosis in sensitive plants grown on model calcium carbonateâ^'iron oxide systems. Plant and Soil, 2013, 373, 31-42.	3.7	18
35	Iron chlorosis in field grown olive as affected by phosphorus fertilization. European Journal of Agronomy, 2013, 51, 101-107.	4.1	7
36	Lowering iron chlorosis of olive by soil application of iron sulfate or siderite. Agronomy for Sustainable Development, 2013, 34, 677.	5.3	1

#	Article	IF	CITATIONS
37	Greenhouse Gas Production, Diffusion and Consumption in a Soil Profile Under Maize and Wheat Production. SSRN Electronic Journal, 0, , .	0.4	0