Seth G Grant

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1788589/publications.pdf Version: 2024-02-01

SETH C. C.DANT

#	Article	IF	CITATIONS
1	An anatomically comprehensive atlas of the adult human brain transcriptome. Nature, 2012, 489, 391-399.	13.7	2,321
2	De novo mutations in schizophrenia implicate synaptic networks. Nature, 2014, 506, 179-184.	13.7	1,510
3	A polygenic burden of rare disruptive mutations in schizophrenia. Nature, 2014, 506, 185-190.	13.7	1,305
4	Impaired long-term potentiation, spatial learning, and hippocampal development in fyn mutant mice. Science, 1992, 258, 1903-1910.	6.0	1,264
5	Proteomic analysis of NMDA receptor–adhesion protein signaling complexes. Nature Neuroscience, 2000, 3, 661-669.	7.1	1,122
6	Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 4645-4649.	3.3	1,084
7	Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein. Nature, 1998, 396, 433-439.	13.7	1,054
8	De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia. Molecular Psychiatry, 2012, 17, 142-153.	4.1	775
9	Arc/Arg3.1 Is Essential for the Consolidation of Synaptic Plasticity and Memories. Neuron, 2006, 52, 437-444.	3.8	743
10	The HUPO PSI's Molecular Interaction format—a community standard for the representation of protein interaction data. Nature Biotechnology, 2004, 22, 177-183.	9.4	581
11	Beta-cell lines derived from transgenic mice expressing a hybrid insulin gene-oncogene Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 9037-9041.	3.3	558
12	Long-term potentiation in the hippocampus is blocked by tyrosine kinase inhibitors. Nature, 1991, 353, 558-560.	13.7	552
13	A role for the Ras signalling pathway in synaptic transmission and long-term memory. Nature, 1997, 390, 281-286.	13.7	449
14	Characterization of the proteome, diseases and evolution of the human postsynaptic density. Nature Neuroscience, 2011, 14, 19-21.	7.1	449
15	Importance of the Intracellular Domain of NR2 Subunits for NMDA Receptor Function In Vivo. Cell, 1998, 92, 279-289.	13.5	419
16	Molecular characterization and comparison of the components and multiprotein complexes in the postsynaptic proteome. Journal of Neurochemistry, 2006, 97, 16-23.	2.1	397
17	Activation of cAMP-Responsive genes by stimuli that produce long-term facilitation in aplysia sensory neurons. Neuron, 1993, 10, 427-435.	3.8	393
18	PDZ Domain Proteins: Plug and Play!. Science Signaling, 2003, 2003, re7-re7.	1.6	374

#	Article	IF	CITATIONS
19	Synapse-Specific and Developmentally Regulated Targeting of AMPA Receptors by a Family of MAGUK Scaffolding Proteins. Neuron, 2006, 52, 307-320.	3.8	346
20	Identification of PSD-95 as a Regulator of Dopamine-Mediated Synaptic and Behavioral Plasticity. Neuron, 2004, 41, 625-638.	3.8	335
21	SynGAP Regulates ERK/MAPK Signaling, Synaptic Plasticity, and Learning in the Complex with Postsynaptic Density 95 and NMDA Receptor. Journal of Neuroscience, 2002, 22, 9721-9732.	1.7	333
22	A new function for the fragile X mental retardation protein in regulation of PSD-95 mRNA stability. Nature Neuroscience, 2007, 10, 578-587.	7.1	318
23	Proteomic Analysis of in Vivo Phosphorylated Synaptic Proteins. Journal of Biological Chemistry, 2005, 280, 5972-5982.	1.6	300
24	Identification of Vulnerable Cell Types in Major Brain Disorders Using Single Cell Transcriptomes and Expression Weighted Cell Type Enrichment. Frontiers in Neuroscience, 2016, 10, 16.	1.4	273
25	Interactive cloning with the SH3 domain of N-src identifies a new brain specific ion channel protein, with homology to Eag and cyclic nucleotide-gated channels. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 14815-14820.	3.3	255
26	Targeted tandem affinity purification of PSDâ€95 recovers core postsynaptic complexes and schizophrenia susceptibility proteins. Molecular Systems Biology, 2009, 5, 269.	3.2	245
27	CYFIP1 Coordinates mRNA Translation and Cytoskeleton Remodeling to Ensure Proper Dendritic Spine Formation. Neuron, 2013, 79, 1169-1182.	3.8	245
28	Synaptic scaffold evolution generated components of vertebrate cognitive complexity. Nature Neuroscience, 2013, 16, 16-24.	7.1	229
29	Synaptopathies: diseases of the synaptome. Current Opinion in Neurobiology, 2012, 22, 522-529.	2.0	220
30	The origin and evolution of synapses. Nature Reviews Neuroscience, 2009, 10, 701-712.	4.9	212
31	Phosphatidylinositol 3-Kinase Regulates the Induction of Long-Term Potentiation through Extracellular Signal-Related Kinase-Independent Mechanisms. Journal of Neuroscience, 2003, 23, 3679-3688.	1.7	203
32	Specific deletion of focal adhesion kinase suppresses tumor formation and blocks malignant progression. Genes and Development, 2004, 18, 2998-3003.	2.7	192
33	Association of Mouse <i>Dlg4</i> (PSD-95) Gene Deletion and Human <i>DLG4</i> Gene Variation With Phenotypes Relevant to Autism Spectrum Disorders and Williams' Syndrome. American Journal of Psychiatry, 2010, 167, 1508-1517.	4.0	191
34	Comparative Study of Human and Mouse Postsynaptic Proteomes Finds High Compositional Conservation and Abundance Differences for Key Synaptic Proteins. PLoS ONE, 2012, 7, e46683.	1.1	179
35	Rescuing impairment of long-term potentiation in fyn-deficient mice by introducing Fyn transgene. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 4761-4765.	3.3	176
36	Evolutionary expansion and anatomical specialization of synapse proteome complexity. Nature	7.1	171

#	Article	IF	CITATIONS
37	Architecture of the Mouse Brain Synaptome. Neuron, 2018, 99, 781-799.e10.	3.8	167
38	Neuroproteomics: understanding the molecular organization and complexity of the brain. Nature Reviews Neuroscience, 2009, 10, 635-646.	4.9	165
39	Separable features of visual cortical plasticity revealed by N-methyl-D-aspartate receptor 2A signaling. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2854-2859.	3.3	159
40	Phosphoproteomic Analysis of the Mouse Brain Cytosol Reveals a Predominance of Protein Phosphorylation in Regions of Intrinsic Sequence Disorder. Molecular and Cellular Proteomics, 2008, 7, 1331-1348.	2.5	157
41	The Subtype of CluN2 C-terminal Domain Determines the Response to Excitotoxic Insults. Neuron, 2012, 74, 543-556.	3.8	155
42	Opposing effects of PSDâ€93 and PSDâ€95 on longâ€ŧerm potentiation and spike timingâ€dependent plasticity. Journal of Physiology, 2008, 586, 5885-5900.	1.3	143
43	Neonatal hepatitis induced by alpha 1-antitrypsin: a transgenic mouse model. Science, 1988, 242, 1409-1412.	6.0	140
44	Proteomics of the nervous system. Trends in Neurosciences, 2001, 24, 259-266.	4.2	135
45	Proteomics in postgenomic neuroscience: the end of the beginning. Nature Neuroscience, 2004, 7, 440-445.	7.1	134
46	Synapse-Associated Protein 102/dlgh3 Couples the NMDA Receptor to Specific Plasticity Pathways and Learning Strategies. Journal of Neuroscience, 2007, 27, 2673-2682.	1.7	134
47	Confirmed rare copy number variants implicate novel genes in schizophrenia. Biochemical Society Transactions, 2010, 38, 445-451.	1.6	132
48	Evolution of Synapse Complexity and Diversity. Annual Review of Neuroscience, 2012, 35, 111-131.	5.0	131
49	Focal adhesion kinase in the brain: novel subcellular localization and specific regulation by Fyn tyrosine kinase in mutant mice Genes and Development, 1995, 9, 1909-1921.	2.7	130
50	PSD95 nanoclusters are postsynaptic building blocks in hippocampus circuits. Scientific Reports, 2016, 6, 24626.	1.6	122
51	Isolation of 2000-kDa complexes of N-methyl-d-aspartate receptor and postsynaptic density 95 from mouse brain. Journal of Neurochemistry, 2001, 77, 281-291.	2.1	120
52	PSD-95 Is Essential for Hallucinogen and Atypical Antipsychotic Drug Actions at Serotonin Receptors. Journal of Neuroscience, 2009, 29, 7124-7136.	1.7	118
53	Neuropathic Sensitization of Behavioral Reflexes and Spinal NMDA Receptor/CaM Kinase II Interactions Are Disrupted in PSD-95 Mutant Mice. Current Biology, 2003, 13, 321-328.	1.8	117
54	NMDA receptors are selectively partitioned into complexes and supercomplexes during synapse maturation. Nature Communications, 2016, 7, 11264.	5.8	117

#	Article	IF	CITATIONS
55	Neurotransmitters Drive Combinatorial Multistate Postsynaptic Density Networks. Science Signaling, 2009, 2, ra19.	1.6	116
56	Evolution of complexity in the zebrafish synapse proteome. Nature Communications, 2017, 8, 14613.	5.8	112
57	The proteomes of neurotransmitter receptor complexes form modular networks with distributed functionality underlying plasticity and behaviour. Molecular Systems Biology, 2006, 2, 2006.0023.	3.2	110
58	A brainwide atlas of synapses across the mouse life span. Science, 2020, 369, 270-275.	6.0	109
59	Multiple Molecular Interactions Determine the Clustering of Caspr2 and Kv1 Channels in Myelinated Axons. Journal of Neuroscience, 2008, 28, 14213-14222.	1.7	106
60	The Role of Neuronal Complexes in Human X-Linked Brain Diseases. American Journal of Human Genetics, 2007, 80, 205-220.	2.6	100
61	FAK is required for axonal sorting by Schwann cells. Journal of Cell Biology, 2007, 176, 277-282.	2.3	98
62	Evolution of GluN2A/B cytoplasmic domains diversified vertebrate synaptic plasticity and behavior. Nature Neuroscience, 2013, 16, 25-32.	7.1	98
63	Bridging the translational divide: identical cognitive touchscreen testing in mice and humans carrying mutations in a disease-relevant homologous gene. Scientific Reports, 2015, 5, 14613.	1.6	97
64	The Role of DNA Copy Number Variation in Schizophrenia. Biological Psychiatry, 2009, 66, 1005-1012.	0.7	91
65	Supramolecular organization of NMDA receptors and the postsynaptic density. Current Opinion in Neurobiology, 2017, 45, 139-147.	2.0	91
66	Evolution of NMDA receptor cytoplasmic interaction domains: implications for organisation of synaptic signalling complexes. BMC Neuroscience, 2008, 9, 6.	0.8	90
67	TNiK Is Required for Postsynaptic and Nuclear Signaling Pathways and Cognitive Function. Journal of Neuroscience, 2012, 32, 13987-13999.	1.7	88
68	Targeting learning. Trends in Neurosciences, 1994, 17, 71-75.	4.2	85
69	Robust nanoscopy of a synaptic protein in living mice by organic-fluorophore labeling. Proceedings of the United States of America, 2018, 115, E8047-E8056.	3.3	85
70	Proteomics in Neuroscience: From Protein to Network. Journal of Neuroscience, 2001, 21, 8315-8318.	1.7	81
71	Inhibition of the Dopamine D1 Receptor Signaling by PSD-95. Journal of Biological Chemistry, 2007, 282, 15778-15789.	1.6	81
72	Overexpression of an Aplysia shaker K+ channel gene modifies the electrical properties and synaptic efficacy of identified Aplysia neurons Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 1133-1137.	3.3	80

#	Article	IF	CITATIONS
73	Clustering of neuronal potassium channels is independent of their interaction with PSD-95. Journal of Cell Biology, 2002, 159, 663-672.	2.3	79
74	Arc Requires PSD95 for Assembly into Postsynaptic Complexes Involved with Neural Dysfunction and Intelligence. Cell Reports, 2017, 21, 679-691.	2.9	79
75	The synapse in traumatic brain injury. Brain, 2021, 144, 18-31.	3.7	79
76	Convergence of Hippocampal Pathophysiology in <i>Syngap</i> ^{+/â^'} and <i>Fmr1</i> ^{â^'/<i>y</i>} Mice. Journal of Neuroscience, 2015, 35, 15073-15081.	1.7	76
77	Integrin-mediated axoglial interactions initiate myelination in the central nervous system. Journal of Cell Biology, 2009, 185, 699-712.	2.3	73
78	PSD-95 Uncouples Dopamine–Glutamate Interaction in the D ₁ /PSD-95/NMDA Receptor Complex. Journal of Neuroscience, 2009, 29, 2948-2960.	1.7	72
79	Quantitative differences in developmental profiles of spontaneous activity in cortical and hippocampal cultures. Neural Development, 2015, 10, 1.	1.1	72
80	In Vivo Composition of NMDA Receptor Signaling Complexes Differs between Membrane Subdomains and Is Modulated by PSD-95 And PSD-93. Journal of Neuroscience, 2010, 30, 8162-8170.	1.7	70
81	Neurone specific regulation of dendritic spines in vivo by post synaptic density 95 protein (PSD-95). Brain Research, 2006, 1090, 89-98.	1.1	66
82	Expression of AMPA Receptor Subunits at Synapses in Laminae l–III of the Rodent Spinal Dorsal Horn. Molecular Pain, 2008, 4, 1744-8069-4-5.	1.0	66
83	In vivo STED microscopy visualizes PSD95 sub-structures and morphological changes over several hours in the mouse visual cortex. Scientific Reports, 2018, 8, 219.	1.6	66
84	SynGAP isoforms exert opposing effects on synaptic strength. Nature Communications, 2012, 3, 900.	5.8	65
85	ATP from synaptic terminals and astrocytes regulates NMDA receptors and synaptic plasticity through PSD-95 multi-protein complex. Scientific Reports, 2016, 6, 33609.	1.6	65
86	Proteomic analysis of postsynaptic proteins in regions of the human neocortex. Nature Neuroscience, 2018, 21, 130-138.	7.1	65
87	G2Cdb: the Genes to Cognition database. Nucleic Acids Research, 2009, 37, D846-D851.	6.5	64
88	Durable fear memories require PSD-95. Molecular Psychiatry, 2015, 20, 901-912.	4.1	64
89	Human cognitive ability is influenced by genetic variation in components of postsynaptic signalling complexes assembled by NMDA receptors and MAGUK proteins. Translational Psychiatry, 2014, 4, e341-e341.	2.4	63
90	Synapse proteomics of multiprotein complexes: en route from genes to nervous system diseases. Human Molecular Genetics, 2005, 14, R225-R234.	1.4	60

#	Article	IF	CITATIONS
91	Dynamic distribution of endoplasmic reticulum in hippocampal neuron dendritic spines. European Journal of Neuroscience, 2005, 22, 1793-1798.	1.2	59
92	Expression of Transgenes Targeted to the Gt(ROSA)26Sor Locus Is Orientation Dependent. PLoS ONE, 2006, 1, e4.	1.1	58
93	Hierarchical organization and genetically separable subfamilies of <scp>PSD</scp> 95 postsynaptic supercomplexes. Journal of Neurochemistry, 2017, 142, 504-511.	2.1	58
94	Comprehensive behavioral analysis of heterozygous <i>Syngap1</i> knockout mice. Neuropsychopharmacology Reports, 2019, 39, 223-237.	1.1	58
95	Neuroligin 1 Is Dynamically Exchanged at Postsynaptic Sites. Journal of Neuroscience, 2010, 30, 12733-12744.	1.7	56
96	SynSysNet: integration of experimental data on synaptic protein–protein interactions with drug-target relations. Nucleic Acids Research, 2012, 41, D834-D840.	6.5	54
97	Clustered Coding Variants in the Glutamate Receptor Complexes of Individuals with Schizophrenia and Bipolar Disorder. PLoS ONE, 2011, 6, e19011.	1.1	54
98	Systems biology in neuroscience: bridging genes to cognition. Current Opinion in Neurobiology, 2003, 13, 577-582.	2.0	53
99	Computational geometry analysis of dendritic spines by structured illumination microscopy. Nature Communications, 2019, 10, 1285.	5.8	53
100	Pro-death NMDA receptor signaling is promoted by the GluN2B C-terminus independently of Dapk1. ELife, 2017, 6, .	2.8	52
101	cDNA sequence of neuroendocrine protein 7B2 expressed in beta cell tumors of transgenic mice. International Journal of Peptide and Protein Research, 1989, 33, 39-45.	0.1	50
102	Fyn tyrosine kinase is required for normal amygdala kindling. Epilepsy Research, 1995, 22, 107-114.	0.8	49
103	NMDA Receptor Activation Dephosphorylates AMPA Receptor Glutamate Receptor 1 Subunits at Threonine 840. Journal of Neuroscience, 2007, 27, 13210-13221.	1.7	49
104	A novel role for PSD-95 in mediating ethanol intoxication, drinking and place preference. Addiction Biology, 2011, 16, 428-439.	1.4	49
105	Human post-mortem synapse proteome integrity screening for proteomic studies of postsynaptic complexes. Molecular Brain, 2014, 7, 88.	1.3	49
106	Multiprotein complex signaling and the plasticity problem. Current Opinion in Neurobiology, 2001, 11, 363-368.	2.0	48
107	Identification of PSD-93 as a Substrate for the Src Family Tyrosine Kinase Fyn. Journal of Biological Chemistry, 2003, 278, 47610-47621.	1.6	48
108	The synapse proteome and phosphoproteome: a new paradigm for synapse biology. Biochemical Society Transactions, 2006, 34, 59-63.	1.6	48

#	Article	IF	CITATIONS
109	Dlg3 Trafficking and Apical Tight Junction Formation Is Regulated by Nedd4 and Nedd4-2 E3ÂUbiquitin Ligases. Developmental Cell, 2011, 21, 479-491.	3.1	48
110	NMDA receptor subunits and associated signaling molecules mediating antidepressant-related effects of NMDA-GluN2B antagonism. Behavioural Brain Research, 2015, 287, 89-95.	1.2	48
111	Knockdown of mental disorder susceptibility genes disrupts neuronal network physiology in vitro. Molecular and Cellular Neurosciences, 2011, 47, 93-99.	1.0	47
112	Flattop regulates basal body docking and positioning in mono- and multiciliated cells. ELife, 2014, 3, .	2.8	47
113	Synapse diversity and synaptome architecture in human genetic disorders. Human Molecular Genetics, 2019, 28, R219-R225.	1.4	46
114	Synapse signalling complexes and networks: machines underlying cognition. BioEssays, 2003, 25, 1229-1235.	1.2	45
115	Motor Impairments, Striatal Degeneration, and Altered Dopamine-Glutamate Interplay in Mice Lacking PSD-95. Journal of Neurogenetics, 2014, 28, 98-111.	0.6	45
116	Recording long-term potentiation of synaptic transmission by three-dimensional multi-electrode arrays. BMC Neuroscience, 2006, 7, 61.	0.8	44
117	Synaptic Ras GTPase Activating Protein Regulates Pattern Formation in the Trigeminal System of Mice. Journal of Neuroscience, 2006, 26, 1355-1365.	1.7	44
118	The mas proto-oncogene is developmentally regulated in the rat central nervous system. Developmental Brain Research, 1992, 68, 75-82.	2.1	43
119	Proto-oncogenes and signaling processes in neural tissues. Neurochemistry International, 1993, 22, 369-384.	1.9	42
120	Proteomics of multiprotein complexes: answering fundamental questions in neuroscience. Trends in Biotechnology, 2001, 19, S49-S54.	4.9	41
121	A genomic lifespan program that reorganises the young adult brain is targeted in schizophrenia. ELife, 2017, 6, .	2.8	41
122	Differential expression of two NMDA receptor interacting proteins, PSD-95 and SynGAP during mouse development. European Journal of Neuroscience, 2005, 21, 351-362.	1.2	40
123	Kinase Networks Integrate Profiles of N-Methyl-d-aspartate Receptor-mediated Gene Expression in Hippocampus. Journal of Biological Chemistry, 2008, 283, 34101-34107.	1.6	39
124	Estimation of the number of synapses in the hippocampus and brain-wide by volume electron microscopy and genetic labeling. Scientific Reports, 2020, 10, 14014.	1.6	39
125	α-Isoform of calcium-calmodulin-dependent protein kinase II and postsynaptic density protein 95 differentially regulate synaptic expression of NR2A– and NR2B–containing N-methyl-d-aspartate receptors in hippocampus. Neuroscience, 2008, 151, 43-55.	1.1	38
126	Regional Diversity in the Postsynaptic Proteome of the Mouse Brain. Proteomes, 2018, 6, 31.	1.7	38

#	Article	IF	CITATIONS
127	Isolation of 2000-kDa complexes of N-methyl-d-aspartate receptor and postsynaptic density 95 from mouse brain. Journal of Neurochemistry, 2008, 77, 281-291.	2.1	37
128	Calciumâ€permeable <scp>AMPA</scp> receptors and silentÂsynapses in cocaine onditioned place preference. EMBO Journal, 2017, 36, 458-474.	3.5	36
129	Network activity-independent coordinated gene expression program for synapse assembly. Proceedings of the United States of America, 2007, 104, 4658-4663.	3.3	35
130	Cognitive components in mice and humans: Combining genetics and touchscreens for medical translation. Neurobiology of Learning and Memory, 2013, 105, 13-19.	1.0	34
131	The molecular evolution of the vertebrate behavioural repertoire. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150051.	1.8	33
132	Reciprocal regulation of microRNA and mRNA profiles in neuronal development and synapse formation. BMC Genomics, 2009, 10, 419.	1.2	32
133	Organization of brain complexitysynapse proteome form and function. Briefings in Functional Genomics & Proteomics, 2006, 5, 66-73.	3.8	31
134	Dlgap1 knockout mice exhibit alterations of the postsynaptic density and selective reductions in sociability. Scientific Reports, 2018, 8, 2281.	1.6	30
135	The Developmental Shift of NMDA Receptor Composition Proceeds Independently of GluN2 Subunit-Specific GluN2 C-Terminal Sequences. Cell Reports, 2018, 25, 841-851.e4.	2.9	30
136	Synapse pathology in Alzheimer's disease. Seminars in Cell and Developmental Biology, 2023, 139, 13-23.	2.3	30
137	The Synapse Diversity Dilemma: Molecular Heterogeneity Confounds Studies of Synapse Function. Frontiers in Synaptic Neuroscience, 2020, 12, 590403.	1.3	27
138	Proteomics of multiprotein complexes: answering fundamental questions in neuroscience. Trends in Biotechnology, 2001, 19, 49-54.	4.9	26
139	Novel MPDZ/MUPP1 transgenic and knockdown models confirm <i>Mpdz</i> 's role in ethanol withdrawal and support its role in voluntary ethanol consumption. Addiction Biology, 2015, 20, 143-147.	1.4	26
140	Robust Enrichment of Phosphorylated Species in Complex Mixtures by Sequential Protein and Peptide Metal-Affinity Chromatography and Analysis by Tandem Mass Spectrometry. Science Signaling, 2005, 2005, pl6-pl6.	1.6	25
141	Haploinsufficiency of EHMT1 improves pattern separation and increases hippocampal cell proliferation. Scientific Reports, 2017, 7, 40284.	1.6	25
142	High throughput protein expression screening in the nervous system - needs and limitations. Journal of Physiology, 2006, 575, 367-372.	1.3	24
143	Toward a molecular catalogue of synapses. Brain Research Reviews, 2007, 55, 445-449.	9.1	24
144	The SH3 domain of postsynaptic density 95 mediates inflammatory pain through phosphatidylinositolâ€3â€kinase recruitment. EMBO Reports, 2010, 11, 473-478.	2.0	24

IF # ARTICLE CITATIONS Nanostructural Diversity of Synapses in the Mammalian Spinal Cord. Scientific Reports, 2020, 10, 8189. 145 Supramolecular Signalling Complexes in the Nervous System., 2007, 43, 185-207. 146 22 Tolerance to ethanol intoxication after chronic ethanol: role of 1.4 <scp>G</scp>lu<scp>N</scp>2<scp>A</scp> and <scp>PSD</scp>â€95. Addiction Biology, 2015, 20, 259-262. Neurobeachin Regulates Glutamate- and GABA-Receptor Targeting to Synapses via Distinct Pathways. 148 1.9 21 Molecular Neurobiology, 2016, 53, 2112-2123. Selectivity, efficacy and toxicity studies of UCCB01-144, a dimeric neuroprotective PSD-95 inhibitor. Neuropharmacology, 2019, 150, 100-111. 149 A singleâ€synapse resolution survey of PSD95â€positive synapses in twenty human brain regions. European 150 1.2 21 Journal of Neuroscience, 2021, 54, 6864-6881. NMDA receptor modulation of glutamate release in activated neutrophils. EBioMedicine, 2019, 47, 2.7 457-469. The Human Postsynaptic Density Shares Conserved Elements with Proteomes of Unicellular 152 1.4 19 Eukaryotes and Prokaryotes. Frontiers in Neuroscience, 2011, 5, 44. Reconstructing protein complexes: From proteomics to systems biology. Proteomics, 2006, 6, 4724-4731. 1.3 Clustered Gene Expression Changes Flank Targeted Gene Loci in Knockout Mice. PLoS ONE, 2007, 2, 154 1.1 18 e1303. Cellâ€typeâ€specific visualisation and biochemical isolation of endogenous synaptic proteins in mice. European Journal of Neuroscience, 2020, 51, 793-805. The Synaptomic Theory of Behavior and Brain Disease. Cold Spring Harbor Symposia on Quantitative 156 2.0 17 Biology, 2018, 83, 45-56. Chronic treatment with a MEK inhibitor reverses enhanced excitatory field potentials in Syngap1+/â^{-,} 1.5 mice. Pharmacological Reports, 2018, 70, 777-783. Enhanced cognition and dysregulated hippocampal synaptic physiology in mice with a heterozygous 158 1.2 16 deletion of PSDâ€95. European Journal of Neuroscience, 2018, 47, 164-176. Transplantation of Î² cells from transgenic mice into nude athymic diabetic rats restores glucose 1.1 regulation. Diabetes Research and Clinical Practice, 1991, 14, 157-164. A novel role for cyclic guanosine 3â€2,5â€2monophosphate signaling in synaptic plasticity: A selective 160 suppressor of protein kinase A-dependent forms of long-term potentiation. Neuroscience, 2006, 140, 1.1 15 415-431. Genome Variation and Complexity in the Autism Spectrum. Neuron, 2010, 67, 8-10. 161 3.8 A Neuronal Transcriptome Response Involving Stress Pathways is Buffered by Neuronal microRNAs. 162 1.4 15

SETH G GRANT

Frontiers in Neuroscience, 2012, 6, 156.

#	Article	IF	CITATIONS
163	Synapse molecular complexity and the plasticity behaviour problem. Brain and Neuroscience Advances, 2018, 2, 239821281881068.	1.8	15
164	A unified resource and configurable model of the synapse proteome and its role in disease. Scientific Reports, 2021, 11, 9967.	1.6	15
165	Selective vulnerability of tripartite synapses in amyotrophic lateral sclerosis. Acta Neuropathologica, 2022, 143, 471-486.	3.9	15
166	Learning and reaction times in mouse touchscreen tests are differentially impacted by mutations in genes encoding postsynaptic interacting proteins <scp>SYNGAP1</scp> , <scp>NLGN3</scp> , <scp>DLGAP1</scp> , <scp>DLGAP2</scp> and <scp>SHANK2</scp> . Genes, Brain and Behavior, 2021, 20, e12723.	1.1	14
167	Analyses of murine Postsynaptic Density-95 identify novel isoforms and potential translational control elements. Molecular Brain Research, 2005, 133, 143-152.	2.5	12
168	Integrating Synapse Proteomics with Transcriptional Regulation. Behavior Genetics, 2007, 37, 18-30.	1.4	12
169	Probing the Modulation of Acute Ethanol Intoxication by Pharmacological Manipulation of the <scp>NMDAR</scp> Glycine Coâ€Agonist Site. Alcoholism: Clinical and Experimental Research, 2013, 37, 223-233.	1.4	11
170	Altered thalamocortical development in the SAP102 knockout model of intellectual disability. Human Molecular Genetics, 2016, 25, 4052-4061.	1.4	11
171	Gene targeting and synaptic plasticity. Current Opinion in Neurobiology, 1994, 4, 687-692.	2.0	10
172	A General Basis for Cognition in the Evolution of Synapse Signaling Complexes. Cold Spring Harbor Symposia on Quantitative Biology, 2009, 74, 249-257.	2.0	10
173	Canalization of genetic and pharmacological perturbations in developing primary neuronal activity patterns. Neuropharmacology, 2016, 100, 47-55.	2.0	10
174	β-adrenergic receptor activation rescues theta frequency stimulation-induced LTP deficits in mice expressing C-terminally truncated NMDA receptor GluN2A subunits. Learning and Memory, 2011, 18, 118-127.	0.5	9
175	Rapid homeostatic downregulation of LTP by extrasynaptic GluN2B receptors. Journal of Neurophysiology, 2018, 120, 2351-2357.	0.9	9
176	An integrative neuroscience program linking mouse genes to cognition and disease , 2003, , 123-138.		9
177	AMPA Receptor Trafficking and GluR1. Science, 2005, 310, 234-235.	6.0	8
178	Metazoan evolution and diversity of glutamate receptors and their auxiliary subunits. Neuropharmacology, 2021, 195, 108640.	2.0	8
179	Sensory mechanisms in the upper respiratory tract affect the inhalation of cigarette smoke in man. Clinical Science, 1986, 71, 117-119.	1.8	6
180	Targeting tyrosine kinase genes and long-term potentiation. Seminars in Neuroscience, 1994, 6, 45-52.	2.3	6

#	Article	IF	CITATIONS
181	Homozygous mutation of focal adhesion kinase in embryonic stem cell derived neurons: normal electrophysiological and morphological properties in vitro. BMC Neuroscience, 2006, 7, 47.	0.8	5
182	Automated design of genomic Southern blot probes. BMC Genomics, 2010, 11, 74.	1.2	5
183	SnapShot: Organizational Principles of the Postsynaptic Proteome. Neuron, 2013, 80, 534-534.e1.	3.8	5
184	Putting tubby on the MAP. Nature Genetics, 2002, 30, 347-348.	9.4	4
185	Michael Rutter: Genes and behavior: nature-nurture interplay explained. Genes, Brain and Behavior, 2006, 5, 303-303.	1.1	4
186	Standardized experiments in mutant mice reveal behavioural similarity on <scp>129S5</scp> and <scp>C57BL</scp> / <scp>6J</scp> backgrounds. Genes, Brain and Behavior, 2017, 16, 409-418.	1.1	4
187	A Comparative Study of High-Contrast Fluorescence Lifetime Probes for Imaging Amyloid in Tissue. Journal of Physical Chemistry B, 2021, 125, 13710-13717.	1.2	4
188	Response. Science, 1993, 262, 762-763.	6.0	2
189	Targeted Gene Disruption in the CNS to Study Learning and Behavior. Methods, 1996, 10, 406-416.	1.9	2
190	Synaptopathy – From Biology to Therapy. Neuropharmacology, 2016, 100, 1.	2.0	2
191	The Organization and Integrative Function of the Post-Synaptic Proteome. , 2003, , 13-44.		2
192	The Hebbosome Hypothesis of Learning: Signaling Complexes Decode Synaptic Patterns of Activity and Distribute Plasticity. Research and Perspectives in Neurosciences, 2003, , 23-43.	0.4	2
193	Chapter 3.1.6 Genetic dissection of a postsynaptic multiprotein complex controlling synaptic plasticity and learning in the mouse. Handbook of Behavioral Neuroscience, 1999, 13, 315-328.	0.0	1
194	Targeted TAP tags, phosphoproteomes and the biology of thought. Expert Review of Proteomics, 2010, 7, 169-171.	1.3	1
195	Proteomics in the Neurosciences. , 2004, , 101-121.		1
196	Synapse Proteomes and Disease. , 2016, , 85-99.		1
197	Defective Reflex Responses to Impeded Breathing During Quiet Sleep or Anesthesia in Thiamine-Deficient Kittens and Puppies. Sleep, 1980, 3, 383-392.	0.6	0
198	ENHANCED LONG TERM POTENTIATION AND IMPAIRED LEARNING IN POST SYNAPTIC DENSITY 95 MUTANT MICE. Biochemical Society Transactions, 1999, 27, A70-A70.	1.6	0

#	Article	IF	CITATIONS
199	Bridging length-scales from molecules to tissues using mouse genetics, cryoCLEM, and cryoET. Microscopy and Microanalysis, 2021, 27, 2574-2576.	0.2	0
200	G2Cdb: a database of the synapse Frontiers in Neuroinformatics, 0, 3, .	1.3	0
201	Synaptic Disease in Psychiatry. , 2013, , 311-321.		0
202	Synaptic Mechanisms of Psychotic Disorders. , 2017, , .		0