
Jeong-Im Sin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1788414/publications.pdf Version: 2024-02-01

LEONG-IM SIN

#	Article	IF	CITATIONS
1	B16 melanoma control by anti-PD-L1 requires CD8+ T cells and NK cells: application of anti-PD-L1 Abs and Trp2 peptide vaccines. Human Vaccines and Immunotherapeutics, 2021, 17, 1910-1922.	3.3	9
2	B16 melanomas evade antitumor immunity by the loss of epitope presentation and the acquisition of tumor resistance to granzyme B. Cellular Immunology, 2021, 367, 104394.	3.0	3
3	CD8+ T Cells Directed Against a Peptide Epitope Derived From Peptidoglycan-Associated Lipoprotein of Legionella pneumophila Confer Disease Protection. Frontiers in Immunology, 2020, 11, 604413.	4.8	4
4	Regulation of the translation activity of antigen-specific mRNA is responsible for antigen loss and tumor immune escape in a HER2-expressing tumor model. Scientific Reports, 2019, 9, 2855.	3.3	12
5	Optimized Gemcitabine Therapy in Combination with E7 Peptide Immunization Elicits Tumor Cure by Preventing Ag-Specific CTL Inhibition in Animals with Large Established Tumors. DNA and Cell Biology, 2018, 37, 850-860.	1.9	6
6	Therapeutic Tumor Control of HER2 DNA Vaccines Is Achieved by an Alteration of Tumor Cells and Tumor Microenvironment by Gemcitabine and Anti-Gr-1 Ab Treatment in a HER2-Expressing Tumor Model. DNA and Cell Biology, 2017, 36, 801-811.	1.9	13
7	Preferential production of IgM-secreting hybridomas by immunization with DNA vaccines coding for Ebola virus glycoprotein: use of protein boosting for IgG-secreting hybridoma production. Clinical and Experimental Vaccine Research, 2017, 6, 135.	2.2	3
8	Tumor regression is mediated via the induction of HER263-71- specific CD8+ CTL activity in a 4T1.2/HER2 tumor model: no involvement of CD80 in tumor control. Oncotarget, 2017, 8, 26771-26788.	1.8	7
9	Intratumorally Establishing Type 2 Innate Lymphoid Cells Blocks Tumor Growth. Journal of Immunology, 2016, 196, 2410-2423.	0.8	86
10	DNA vaccines, electroporation and their applications in cancer treatment. Human Vaccines and Immunotherapeutics, 2015, 11, 1889-1900.	3.3	58
11	MC32 tumor cells acquire Ag-specific CTL resistance through the loss of CEA in a colon cancer model. Human Vaccines and Immunotherapeutics, 2015, 11, 2012-2020.	3.3	10
12	A loss of antitumor therapeutic activity of CEA DNA vaccines is associated with the lack of tumor cells' antigen presentation to Ag-specific CTLs in a colon cancer model. Cancer Letters, 2015, 356, 676-685.	7.2	14
13	Flagellin enhances tumor-specific CD8+ T cell immune responses through TLR5 stimulation in a therapeutic cancer vaccine model. Vaccine, 2013, 31, 3879-3887.	3.8	75
14	Combined stimulation of TLR9 and 4.1BB augments Trp2 peptide vaccine-mediated melanoma rejection by increasing Ag-specific CTL activity and infiltration into tumor sites. Cancer Letters, 2013, 330, 190-199.	7.2	29
15	DNA vaccines targeting human papillomavirus-associated diseases: progresses in animal and clinical studies. Clinical and Experimental Vaccine Research, 2013, 2, 106.	2.2	9
16	Combined Stimulation of IL-2 and 4-1BB Receptors Augments the Antitumor Activity of E7 DNA Vaccines by Increasing Ag-Specific CTL Responses. PLoS ONE, 2013, 8, e83765.	2.5	27
17	Electroporation driven delivery of both an IL-12 expressing plasmid and cisplatin synergizes to inhibit B16 melanoma tumor growth through an NK cell mediated tumor killing mechanism. Human Vaccines and Immunotherapeutics, 2012, 8, 1714-1721.	3.3	17
18	Intratumoral electroporation of IL-12 cDNA eradicates established melanomas by Trp2180–188-specific CD8+ CTLs in a perforin/granzyme-mediated and IFN-γ-dependent manner: application of Trp2180–188 peptides. Cancer Immunology, Immunotherapy, 2012, 61, 1671-1682.	4.2	45

JEONG-IM SIN

#	Article	IF	CITATIONS
19	MyD88 signal is required for more efficient induction of Ag-specific adaptive immune responses and antitumor resistance in a human papillomavirus E7 DNA vaccine model. Vaccine, 2011, 29, 4125-4131.	3.8	9
20	Antitumor Therapeutic and Antimetastatic Activity of Electroporation-Delivered Human Papillomavirus 16 E7 DNA Vaccines: A Possible Mechanism for Enhanced Tumor Control. DNA and Cell Biology, 2011, 30, 975-985.	1.9	16
21	DNA Vaccines against Infectious Diseases and Cancer. Biomolecules and Therapeutics, 2010, 18, 1-15.	2.4	4
22	Promises and challenges of human papillomavirus vaccines for cervical cancer. Expert Review of Anticancer Therapy, 2009, 9, 1-5.	2.4	7
23	Adoptive Transfer of Human Papillomavirus E7-specific CTL Enhances Tumor Chemoresponse Through the Perforin/Granzyme-mediated Pathway. Molecular Therapy, 2009, 17, 906-913.	8.2	28
24	Suppression of antitumour protective cytotoxic T lymphocyte responses to a human papillomavirus 16 E7 DNA vaccine by coinjection of interleukinâ€12 complementary DNA: involvement of nitric oxide in immune suppression. Immunology, 2009, 128, e707-17.	4.4	13
25	Increased Sensitivity of Radiated Murine Cervical Cancer Tumors to E7 Subunit Vaccine–driven CTL-mediated Killing Induces Synergistic Anti-tumor Activity. Molecular Therapy, 2007, 15, 1564-1570.	8.2	43
26	Therapeutic Synergy of Human Papillomavirus E7 Subunit Vaccines plus Cisplatin in an Animal Tumor Model: Causal Involvement of Increased Sensitivity of Cisplatin-Treated Tumors to CTL-Mediated Killing in Therapeutic Synergy. Clinical Cancer Research, 2007, 13, 341-349.	7.0	66
27	Antitumor Therapeutic Effects of E7 Subunit and DNA Vaccines in an Animal Cervical Cancer Model: Antitumor Efficacy of E7 Therapeutic Vaccines Is Dependent on Tumor Sizes, Vaccine Doses, and Vaccine Delivery Routes. DNA and Cell Biology, 2006, 25, 277-286.	1.9	21
28	Human papillomavirus vaccines for the treatment of cervical cancer. Expert Review of Vaccines, 2006, 5, 783-792.	4.4	11
29	Both antigen optimization and lysosomal targeting are required for enhanced anti-tumour protective immunity in a human papillomavirus E7-expressing animal tumour model. Immunology, 2005, 116, 255-266.	4.4	45
30	CpG-ODN-stimulated dendritic cells act as a potent adjuvant for E7 protein delivery to induce antigen-specific antitumour immunity in a HPV 16 E7-associated animal tumour model. Immunology, 2004, 112, 117-125.	4.4	44
31	A Therapy Modality Using Recombinant IL-12 Adenovirus plus E7 Protein in a Human Papillomavirus 16 E6/E7-Associated Cervical Cancer Animal Model. Human Gene Therapy, 2003, 14, 1389-1399.	2.7	48
32	Differential Suppression of Human Cervical Cancer Cell Growth by Adenovirus Delivery of p53in vitro: Arrest Phase of Cell Cycle Is Dependent on Cell Line. Japanese Journal of Cancer Research, 2002, 93, 1012-1019.	1.7	16
33	Both E7 and CpG-oligodeoxynucleotide are required for protective immunity against challenge with human papillomavirus 16 (E6/E7) immortalized tumor cells: involvement of CD4+ and CD8+ T cells in protection. Cancer Research, 2002, 62, 7234-40.	0.9	67
34	Enhancement of VP1-specific immune responses and protection against EMCV-K challenge by co-delivery of IL-12 DNA with VP1 DNA vaccine. Vaccine, 2001, 19, 1891-1898.	3.8	11
35	Protective immune correlates can segregate by vaccine type in a murine herpes model system. International Immunology, 1999, 11, 1763-1773.	4.0	25
36	In Vivo Modulation of Vaccine-Induced Immune Responses toward a Th1 Phenotype Increases Potency and Vaccine Effectiveness in a Herpes Simplex Virus Type 2 Mouse Model. Journal of Virology, 1999, 73, 501-509.	3.4	139