Manuel Garber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1788198/publications.pdf

Version: 2024-02-01

76196 143772 27,428 57 40 57 citations h-index g-index papers 65 65 65 40740 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature, 2009, 458, 223-227.	13.7	3,801
2	Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11667-11672.	3.3	2,709
3	Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature, 2005, 438, 803-819.	13.7	2,215
4	SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell, 2020, 181, 1016-1035.e19.	13.5	1,956
5	A Large Intergenic Noncoding RNA Induced by p53 Mediates Global Gene Repression in the p53 Response. Cell, 2010, 142, 409-419.	13.5	1,919
6	lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature, 2011, 477, 295-300.	13.7	1,749
7	Ab initio reconstruction of cell type–specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nature Biotechnology, 2010, 28, 503-510.	9.4	1,251
8	A high-resolution map of human evolutionary constraint using 29 mammals. Nature, 2011, 478, 476-482.	13.7	1,016
9	Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science, 2016, 351, 391-396.	6.0	992
10	Computational methods for transcriptome annotation and quantification using RNA-seq. Nature Methods, 2011, 8, 469-477.	9.0	919
11	Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nature Genetics, 2010, 42, 1113-1117.	9.4	902
12	Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis. Genome Research, 2012, 22, 577-591.	2.4	809
13	Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences. Nature, 2007, 447, 167-177.	13.7	661
14	Higher-Order Inter-chromosomal Hubs Shape 3D Genome Organization in the Nucleus. Cell, 2018, 174, 744-757.e24.	13.5	649
15	Functional annotation of native enhancers with a Cas9–histone demethylase fusion. Nature Methods, 2015, 12, 401-403.	9.0	548
16	Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells. Nature Biotechnology, 2011, 29, 436-442.	9.4	524
17	Unbiased Reconstruction of a Mammalian Transcriptional Network Mediating Pathogen Responses. Science, 2009, 326, 257-263.	6.0	473
18	A Composite of Multiple Signals Distinguishes Causal Variants in Regions of Positive Selection. Science, 2010, 327, 883-886.	6.0	457

#	Article	IF	CITATIONS
19	A High-Throughput Chromatin Immunoprecipitation Approach Reveals Principles of Dynamic Gene Regulation in Mammals. Molecular Cell, 2012, 47, 810-822.	4.5	375
20	Evolutionary dynamics and tissue specificity of human long noncoding RNAs in six mammals. Genome Research, 2014, 24, 616-628.	2.4	318
21	Gene Expression Is Circular: Factors for mRNA Degradation Also Foster mRNA Synthesis. Cell, 2013, 153, 1000-1011.	13.5	311
22	Simultaneous generation of many RNA-seq libraries in a single reaction. Nature Methods, 2015, 12, 323-325.	9.0	256
23	Quality scores and SNP detection in sequencing-by-synthesis systems. Genome Research, 2008, 18, 763-770.	2.4	232
24	DEBrowser: interactive differential expression analysis and visualization tool for count data. BMC Genomics, 2019, 20, 6.	1.2	186
25	Systematic Discovery of TLR Signaling Components Delineates Viral-Sensing Circuits. Cell, 2011, 147, 853-867.	13.5	177
26	Ebola Virus Glycoprotein with Increased Infectivity Dominated the 2013–2016 Epidemic. Cell, 2016, 167, 1088-1098.e6.	13.5	173
27	The PPARα-FGF21 Hormone Axis Contributes to Metabolic Regulation by the Hepatic JNK Signaling Pathway. Cell Metabolism, 2014, 20, 512-525.	7.2	149
28	Evolutionary analysis across mammals reveals distinct classes of long non-coding RNAs. Genome Biology, $2016,17,19.$	3.8	141
29	DNA sequence of human chromosome 17 and analysis of rearrangement in the human lineage. Nature, 2006, 440, 1045-1049.	13.7	130
30	Genetic and Epigenetic Variation, but Not Diet, Shape the Sperm Methylome. Developmental Cell, 2015, 35, 750-758.	3.1	130
31	Transcriptome-wide Analysis of Roles for tRNA Modifications in Translational Regulation. Molecular Cell, 2017, 68, 978-992.e4.	4.5	118
32	DNA sequence and analysis of human chromosome 8. Nature, 2006, 439, 331-335.	13.7	115
33	DNA-binding-domain fusions enhance the targeting range and precision of Cas9. Nature Methods, 2015, 12, 1150-1156.	9.0	107
34	Diverse repertoire of human adipocyte subtypes develops from transcriptionally distinct mesenchymal progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17970-17979.	3.3	106
35	Analysis of the DNA sequence and duplication history of human chromosome 15. Nature, 2006, 440, 671-675.	13.7	67
36	DolphinNext: a distributed data processing platform for high throughput genomics. BMC Genomics, 2020, 21, 310.	1.2	66

#	Article	IF	CITATIONS
37	End Sequence Analysis Toolkit (ESAT) expands the extractable information from single-cell RNA-seq data. Genome Research, 2016, 26, 1397-1410.	2.4	63
38	Frequent Loss of IRF2 in Cancers Leads to Immune Evasion through Decreased MHC Class I Antigen Presentation and Increased PD-L1 Expression. Journal of Immunology, 2019, 203, 1999-2010.	0.4	63
39	Simultaneous profiling of multiple chromatin proteins in the same cells. Molecular Cell, 2021, 81, 4736-4746.e5.	4.5	62
40	HIV-1-induced cytokines deplete homeostatic innate lymphoid cells and expand TCF7-dependent memory NK cells. Nature Immunology, 2020, 21, 274-286.	7.0	60
41	A Negative Feedback Loop of Transcription Factors Specifies Alternative Dendritic Cell Chromatin States. Molecular Cell, 2014, 56, 749-762.	4.5	58
42	DNA sequence and analysis of human chromosome 18. Nature, 2005, 437, 551-555.	13.7	53
43	An atlas of cell types in the mouse epididymis and vas deferens. ELife, 2020, 9, .	2.8	51
44	scRNA-seq of human vitiligo reveals complex networks of subclinical immune activation and a role for CCR5 in T _{reg} function. Science Translational Medicine, 2021, 13, eabd8995.	5.8	50
45	GUIDEseq: a bioconductor package to analyze GUIDE-Seq datasets for CRISPR-Cas nucleases. BMC Genomics, 2017, 18, 379.	1.2	32
46	Early Epstein-Barr Virus Genomic Diversity and Convergence toward the B95.8 Genome in Primary Infection. Journal of Virology, 2018, 92, .	1.5	28
47	Spatial transcriptomic reconstruction of the mouse olfactory glomerular map suggests principles of odor processing. Nature Neuroscience, 2022, 25, 484-492.	7.1	27
48	High Epstein-Barr Virus Load and Genomic Diversity Are Associated with Generation of gp350-Specific Neutralizing Antibodies following Acute Infectious Mononucleosis. Journal of Virology, 2017, 91, .	1.5	23
49	High-Resolution Mapping of Multiway Enhancer-Promoter Interactions Regulating Pathogen Detection. Molecular Cell, 2020, 80, 359-373.e8.	4.5	21
50	Epstein-Barr Virus Latent Membrane Protein 1 Genetic Variability in Peripheral Blood B Cells and Oropharyngeal Fluids. Journal of Virology, 2014, 88, 3744-3755.	1.5	19
51	Comparative Analysis of Immune Cells Reveals a Conserved Regulatory Lexicon. Cell Systems, 2018, 6, 381-394.e7.	2.9	19
52	Hierarchy of signaling thresholds downstream of the T cell receptor and the Tec kinase ITK. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	19
53	Defining the 5î,, and 3î,, landscape of the Drosophila transcriptome with Exo-seq and RNaseH-seq. Nucleic Acids Research, 2017, 45, e95-e95.	6.5	11
54	Single cell transcriptomics reveals dysregulated cellular and molecular networks in a fragile X syndrome model. PLoS Genetics, 2022, 18, e1010221.	1.5	11

#	Article	IF	CITATIONS
55	Genome-wide assessment of post-transcriptional control in the fly brain. Frontiers in Molecular Neuroscience, 2013, 6, 49.	1.4	9
56	DNA sequence analysis of the conserved region around the SOD1 gene locus in recessively inherited ALS. Neuroscience Letters, 2009, 463, 64-69.	1.0	6
57	Gaining Insight into Vitiligo Genetics through the Lens of a Large Epidemiologic Study. Journal of Investigative Dermatology, 2021, 141, 718-721.	0.3	O