
Phillip Scott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1788168/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Leishmaniasis: complexity at the host–pathogen interface. Nature Reviews Microbiology, 2011, 9, 604-615.	13.6	784
2	IL-12: initiation cytokine for cell-mediated immunity. Science, 1993, 260, 496-497.	6.0	570
3	Interleukin-12 is required for interferon-γ production and lethality in lipopolysaccharide-induced shock in mice. European Journal of Immunology, 1995, 25, 672-676.	1.6	478
4	Cutaneous leishmaniasis: immune responses in protection and pathogenesis. Nature Reviews Immunology, 2016, 16, 581-592.	10.6	467
5	Central memory T cells mediate long-term immunity to Leishmania major in the absence of persistent parasites. Nature Medicine, 2004, 10, 1104-1110.	15.2	306
6	Role of Cytokines in the Differentiation of CD4+T-Cell Subsets in vivo. Immunological Reviews, 1991, 123, 189-207.	2.8	288
7	Migratory Dermal Dendritic Cells Act as Rapid Sensors of Protozoan Parasites. PLoS Pathogens, 2008, 4, e1000222.	2.1	213
8	IL-12 Is Required to Maintain a Th1 Response During <i>Leishmania major</i> Infection. Journal of Immunology, 2000, 165, 896-902.	0.4	188
9	Skin-resident memory CD4+ T cells enhance protection against <i>Leishmania major</i> infection. Journal of Experimental Medicine, 2015, 212, 1405-1414.	4.2	172
10	CD8+ T cell cytotoxicity mediates pathology in the skin by inflammasome activation and IL-1 $\hat{1}^2$ production. PLoS Pathogens, 2017, 13, e1006196.	2.1	160
11	IL-17 Mediates Immunopathology in the Absence of IL-10 Following Leishmania major Infection. PLoS Pathogens, 2013, 9, e1003243.	2.1	144
12	Low Dose Leishmania major Promotes a Transient T Helper Cell Type 2 Response That Is Down-regulated by Interferon γ–producing CD8+ T Cells. Journal of Experimental Medicine, 2004, 199, 1559-1566.	4.2	138
13	IL-4-Independent Inhibition of IL-12 Responsiveness During <i>Leishmania amazonensis</i> Infection. Journal of Immunology, 2000, 165, 364-372.	0.4	131
14	Cytotoxic T Cells Mediate Pathology and Metastasis in Cutaneous Leishmaniasis. PLoS Pathogens, 2013, 9, e1003504.	2.1	130
15	Genomic Profiling of Human Leishmania braziliensis Lesions Identifies Transcriptional Modules Associated with Cutaneous Immunopathology. Journal of Investigative Dermatology, 2015, 135, 94-101.	0.3	130
16	Vaccination with Phosphoglycan-Deficient <i>Leishmania major</i> Protects Highly Susceptible Mice from Virulent Challenge without Inducing a Strong Th1 Response. Journal of Immunology, 2004, 172, 3793-3797.	0.4	120
17	Interleukin 17 Production among Patients with American Cutaneous Leishmaniasis. Journal of Infectious Diseases, 2009, 200, 75-78.	1.9	120
18	The role of the innate immune response in Th1 cell development following <i>Leishmania major</i> infection. Journal of Leukocyte Biology, 1995, 57, 515-522.	1.5	115

#	Article	IF	CITATIONS
19	The development of effector and memory T cells in cutaneous leishmaniasis: the implications for vaccine development. Immunological Reviews, 2004, 201, 318-338.	2.8	113
20	Cysteine Protease B of <i>Leishmania mexicana</i> Inhibits Host Th1 Responses and Protective Immunity. Journal of Immunology, 2003, 171, 3711-3717.	0.4	103
21	Human Classical Monocytes Control the Intracellular Stage of Leishmania braziliensis by Reactive Oxygen Species. Journal of Infectious Diseases, 2014, 209, 1288-1296.	1.9	99
22	Cutting Edge: Early IL-4 Production Governs the Requirement for IL-27-WSX-1 Signaling in the Development of Protective Th1 Cytokine Responses following <i>Leishmania major</i> Infection. Journal of Immunology, 2004, 172, 4672-4675.	0.4	97
23	Protective and Pathological Functions of CD8 ⁺ T Cells in Leishmania braziliensis Infection. Infection and Immunity, 2015, 83, 898-906.	1.0	97
24	Interleukin 10- and Fc ^î 3 Receptor-Deficient Mice Resolve Leishmania mexicana Lesions. Infection and Immunity, 2005, 73, 2101-2108.	1.0	88
25	The Role of IL-12 in Maintaining Resistance to <i>Leishmania major</i> . Journal of Immunology, 2002, 168, 5771-5777.	0.4	83
26	Skin-resident CD4+ T cells protect against Leishmania major by recruiting and activating inflammatory monocytes. PLoS Pathogens, 2017, 13, e1006349.	2.1	83
27	Cutaneous Leishmaniasis Induces a Transmissible Dysbiotic Skin Microbiota that Promotes Skin Inflammation. Cell Host and Microbe, 2017, 22, 13-24.e4.	5.1	82
28	Engagement of NKG2D on Bystander Memory CD8 T Cells Promotes Increased Immunopathology following Leishmania major Infection. PLoS Pathogens, 2014, 10, e1003970.	2.1	79
29	Drug Discovery for Kinetoplastid Diseases: Future Directions. ACS Infectious Diseases, 2019, 5, 152-157.	1.8	78
30	Differential Requirement for NF-κB Family Members in Control of Helminth Infection and Intestinal Inflammation. Journal of Immunology, 2002, 169, 4481-4487.	0.4	77
31	Vervet Monkeys Vaccinated with Killed Leishmania major Parasites and Interleukin-12 Develop a Type 1 Immune Response but Are Not Protected against Challenge Infection. Infection and Immunity, 2001, 69, 245-251.	1.0	74
32	CD8+ T cells in cutaneous leishmaniasis: the good, the bad, and the ugly. Seminars in Immunopathology, 2015, 37, 251-259.	2.8	72
33	Meta-transcriptome Profiling of the Human-Leishmania braziliensis Cutaneous Lesion. PLoS Neglected Tropical Diseases, 2016, 10, e0004992.	1.3	71
34	Functional Dichotomy of Dendritic Cells following Interaction with <i>Leishmania braziliensis</i> : Infected Cells Produce High Levels of TNF-α, whereas Bystander Dendritic Cells Are Activated to Promote T Cell Responses. Journal of Immunology, 2008, 181, 6473-6480.	0.4	68
35	Dendritic cells and immunity to leishmaniasis and toxoplasmosis. Current Opinion in Immunology, 2002, 14, 466-470.	2.4	66
36	Differential Regulation of the Interleukin-12 Receptor during the Innate Immune Response to <i>Leishmania major</i> . Infection and Immunity, 1998, 66, 3818-3824.	1.0	65

#	Article	IF	CITATIONS
37	Variable gene expression and parasite load predict treatment outcome in cutaneous leishmaniasis. Science Translational Medicine, 2019, 11, .	5.8	63
38	IL-7 Receptor Expression Provides the Potential for Long-Term Survival of Both CD62Lhigh Central Memory T Cells and Th1 Effector Cells during <i>Leishmania major</i> Infection. Journal of Immunology, 2009, 182, 5702-5711.	0.4	62
39	Intermediate Monocytes Contribute to Pathologic Immune Response in <i>Leishmania braziliensis</i> Infections. Journal of Infectious Diseases, 2015, 211, 274-282.	1.9	62
40	Control of New World cutaneous leishmaniasis is IL-12 independent but STAT4 dependent. European Journal of Immunology, 2002, 32, 3206-3215.	1.6	58
41	The Central Memory CD4+ T Cell Population Generated during <i>Leishmania major</i> Infection Requires IL-12 to Produce IFN-l³. Journal of Immunology, 2008, 180, 8299-8305.	0.4	57
42	Development and Regulation of Cell-Mediated Immunity in Experimental Leishmaniasis. Immunologic Research, 2003, 27, 489-498.	1.3	55
43	IL-1β Production by Intermediate Monocytes Is Associated with Immunopathology in Cutaneous Leishmaniasis. Journal of Investigative Dermatology, 2018, 138, 1107-1115.	0.3	52
44	The role of IL-12 in the maintenance of an established Th1 immune response in experimental leishmaniasis. European Journal of Immunology, 1998, 28, 2227-2233.	1.6	51
45	NF-κB1 Is Required for Optimal CD4+Th1 Cell Development and Resistance toLeishmania major. Journal of Immunology, 2003, 170, 1995-2003.	0.4	51
46	Immunologic memory in cutaneous leishmaniasis. Cellular Microbiology, 2005, 7, 1707-1713.	1.1	51
47	NF-κB2 Is Required for Optimal CD40-Induced IL-12 Production but Dispensable for Th1 Cell Differentiation. Journal of Immunology, 2002, 168, 4406-4413.	0.4	47
48	Interleukin-12 Regulates Chemokine Gene Expression during the Early Immune Response to Leishmania major. Infection and Immunity, 2003, 71, 1587-1589.	1.0	40
49	Lymphocytic Choriomeningitis Virus Expands a Population of NKG2D+CD8+ T Cells That Exacerbates Disease in Mice Coinfected with <i>Leishmania major</i> . Journal of Immunology, 2015, 195, 3301-3310.	0.4	40
50	IL-22 Protects against Tissue Damage during Cutaneous Leishmaniasis. PLoS ONE, 2015, 10, e0134698.	1.1	38
51	Maintenance of IL-12-responsive CD4+ T cells during a Th2 response inLeishmania major-infected mice. European Journal of Immunology, 2000, 30, 2007-2014.	1.6	36
52	Lymph Node Hypertrophy following Leishmania major Infection Is Dependent on TLR9. Journal of Immunology, 2012, 188, 1394-1401.	0.4	36
53	Matrix Metalloproteinase 9 Production by Monocytes is Enhanced by TNF and Participates in the Pathology of Human Cutaneous Leishmaniasis. PLoS Neglected Tropical Diseases, 2014, 8, e3282.	1.3	36
54	Memory T cells in cutaneous leishmaniasis. Cellular Immunology, 2016, 309, 50-54.	1.4	36

#	Article	IF	CITATIONS
55	Leishmania braziliensis Infection Enhances Toll-Like Receptors 2 and 4 Expression and Triggers TNF-α and IL-10 Production in Human Cutaneous Leishmaniasis. Frontiers in Cellular and Infection Microbiology, 2019, 9, 120.	1.8	32
56	Granzyme B Produced by Natural Killer Cells Enhances Inflammatory Response and Contributes to the Immunopathology of Cutaneous Leishmaniasis. Journal of Infectious Diseases, 2020, 221, 973-982.	1.9	30
57	Characterization of the Histopathologic Features in Patients in the Early and Late Phases of Cutaneous Leishmaniasis. American Journal of Tropical Medicine and Hygiene, 2017, 96, 16-0539.	0.6	29
58	<i>Leishmania major</i> Infection–Induced VEGF-A/VEGFR-2 Signaling Promotes Lymphangiogenesis That Controls Disease. Journal of Immunology, 2016, 197, 1823-1831.	0.4	27
59	<i>Leishmania mexicana</i> Infection Induces Impaired Lymph Node Expansion and Th1 Cell Differentiation Despite Normal T Cell Proliferation. Journal of Immunology, 2007, 179, 8200-8207.	0.4	26
60	Leishmania mexicana Induces Limited Recruitment and Activation of Monocytes and Monocyte-Derived Dendritic Cells Early during Infection. PLoS Neglected Tropical Diseases, 2012, 6, e1858.	1.3	26
61	Phenotypic and functional characteristics of HLA-DR+ neutrophils in Brazilians with cutaneous leishmaniasis. Journal of Leukocyte Biology, 2017, 101, 739-749.	1.5	25
62	CD8+ T Cells Lack Local Signals To Produce IFN-γ in the Skin during <i>Leishmania</i> Infection. Journal of Immunology, 2018, 200, 1737-1745.	0.4	24
63	Glyburide, a NLRP3 Inhibitor, Decreases Inflammatory Response and Is a Candidate to Reduce Pathology in Leishmania braziliensis Infection. Journal of Investigative Dermatology, 2020, 140, 246-249.e2.	0.3	24
64	Granzyme B Inhibition by Tofacitinib Blocks the Pathology Induced by CD8 T Cells in Cutaneous Leishmaniasis. Journal of Investigative Dermatology, 2021, 141, 575-585.	0.3	24
65	Th Cell Development and Regulation in Experimental Cutaneous Leishmaniasis. Chemical Immunology and Allergy, 1996, 63, 98-114.	1.7	23
66	Early Cutaneous Leishmaniasis Patients Infected With Leishmania braziliensis Express Increased Inflammatory Responses After Antimony Therapy. Journal of Infectious Diseases, 2018, 217, 840-850.	1.9	22
67	Immunologic response and memory T cells in subjects cured of tegumentary leishmaniasis. BMC Infectious Diseases, 2013, 13, 529.	1.3	21
68	Host-Directed Therapies for Cutaneous Leishmaniasis. Frontiers in Immunology, 2021, 12, 660183.	2.2	19
69	Intradermal Synthetic DNA Vaccination Generates <i>Leishmania</i> -Specific T Cells in the Skin and Protection against Leishmania major. Infection and Immunity, 2019, 87, .	1.0	18
70	Differential requirement of CD28 for IL-12 receptor expression and function in CD4+ and CD8+ T cells. European Journal of Immunology, 2001, 31, 384-395.	1.6	17
71	Leishmania — A Parasitized Parasite. New England Journal of Medicine, 2011, 364, 1773-1774.	13.9	17
72	Localized skin inflammation during cutaneous leishmaniasis drives a chronic, systemic IFN-Î ³ signature. PLoS Neglected Tropical Diseases, 2021, 15, e0009321.	1.3	17

#	Article	IF	CITATIONS
73	<i>Leishmania</i> Infection Induces Macrophage Vascular Endothelial Growth Factor A Production in an ARNT/HIF-Dependent Manner. Infection and Immunity, 2019, 87, .	1.0	14
74	Tissue Damage in Human Cutaneous Leishmaniasis: Correlations Between Inflammatory Cells and Molecule Expression. Frontiers in Cellular and Infection Microbiology, 2020, 10, 355.	1.8	12
75	Long-Lived Skin-Resident Memory T Cells Contribute to Concomitant Immunity in Cutaneous Leishmaniasis. Cold Spring Harbor Perspectives in Biology, 2020, 12, a038059.	2.3	11
76	Microbiota instruct IL-17A-producing innate lymphoid cells to promote skin inflammation in cutaneous leishmaniasis. PLoS Pathogens, 2021, 17, e1009693.	2.1	11
77	The Role of IL-12 in Regulation of T Helper Cell Subsets in Vivo Annals of the New York Academy of Sciences, 1996, 795, 250-256.	1.8	8
78	Transcriptomic landscape of skin lesions in cutaneous leishmaniasis reveals a strong CD8 ⁺ T cell immunosenescence signature linked to immunopathology. Immunology, 2021, 164, 754-765.	2.0	8
79	Immunoparasitology. Immunological Reviews, 2004, 201, 5-8.	2.8	3
80	Finding Leishmania: A Deadly Game of Hide-and-Seek. Cell Host and Microbe, 2009, 6, 3-4.	5.1	2
81	Acquired Immunity to Intracellular Protozoa. , 2014, , 301-311.		2
82	Inhibition of gamma-secretase activity without interfering in Notch signalling decreases inflammatory response in patients with cutaneous leishmaniasis. Emerging Microbes and Infections, 2021, 10, 1219-1226.	3.0	2
83	Adaptive Immune Effector Mechanisms against Intracellular Protozoa and Gut-Dwelling Nematodes. , 0. , 235-246.		2