Kristen M Kennedy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/178776/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regional Brain Changes in Aging Healthy Adults: General Trends, Individual Differences and Modifiers. Cerebral Cortex, 2005, 15, 1676-1689.	1.6	2,331
2	Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. NeuroImage, 2010, 53, 1-15.	2.1	2,251
3	Differential aging of the brain: Patterns, cognitive correlates and modifiers. Neuroscience and Biobehavioral Reviews, 2006, 30, 730-748.	2.9	953
4	Aging, sexual dimorphism, and hemispheric asymmetry of the cerebral cortex: replicability of regional differences in volume. Neurobiology of Aging, 2004, 25, 377-396.	1.5	617
5	A theoretical framework for the study of adult cognitive plasticity Psychological Bulletin, 2010, 136, 659-676.	5.5	593
6	Trajectories of brain aging in middle-aged and older adults: Regional and individual differences. Neurolmage, 2010, 51, 501-511.	2.1	504
7	Functional Alterations in Memory Networks in Early Alzheimer's Disease. NeuroMolecular Medicine, 2010, 12, 27-43.	1.8	497
8	Brain-Derived Neurotrophic Factor Is Associated with Age-Related Decline in Hippocampal Volume. Journal of Neuroscience, 2010, 30, 5368-5375.	1.7	462
9	Aging white matter and cognition: Differential effects of regional variations in diffusion properties on memory, executive functions, and speed. Neuropsychologia, 2009, 47, 916-927.	0.7	398
10	Growth of white matter in the adolescent brain: Myelin or axon?. Brain and Cognition, 2010, 72, 26-35.	0.8	372
11	Differential aging of the medial temporal lobe. Neurology, 2004, 62, 433-438.	1.5	370
12	Age-related differences in white matter microstructure: Region-specific patterns of diffusivity. NeuroImage, 2010, 49, 2104-2112.	2.1	340
13	β-Amyloid burden in healthy aging. Neurology, 2012, 78, 387-395.	1.5	338
14	Cognition, reserve, and amyloid deposition in normal aging. Annals of Neurology, 2010, 67, 353-364.	2.8	313
15	Alterations in Cerebral Metabolic Rate and Blood Supply across the Adult Lifespan. Cerebral Cortex, 2011, 21, 1426-1434.	1.6	311
16	Amyloidâ€Î² associated cortical thinning in clinically normal elderly. Annals of Neurology, 2011, 69, 1032-1042.	2.8	306
17	Relationships between Beta-Amyloid and Functional Connectivity in Different Components of the Default Mode Network in Aging. Cerebral Cortex, 2011, 21, 2399-2407.	1.6	306
18	A Multivariate Analysis of Age-Related Differences in Default Mode and Task-Positive Networks across Multiple Cognitive Domains, Cerebral Cortex, 2010, 20, 1432-1447,	1.6	286

#	Article	IF	CITATIONS
19	Atlas-guided tract reconstruction for automated and comprehensive examination of the white matter anatomy. NeuroImage, 2010, 52, 1289-1301.	2.1	277
20	Intrinsic connectivity between the hippocampus and posteromedial cortex predicts memory performance in cognitively intact older individuals. NeuroImage, 2010, 51, 910-917.	2.1	237
21	Sex- and Brain Size–Related Small-World Structural Cortical Networks in Young Adults: A DTI Tractography Study. Cerebral Cortex, 2011, 21, 449-458.	1.6	231
22	Vascular health and longitudinal changes in brain and cognition in middle-aged and older adults Neuropsychology, 2007, 21, 149-157.	1.0	225
23	Shrinkage of the Entorhinal Cortex over Five Years Predicts Memory Performance in Healthy Adults. Journal of Neuroscience, 2004, 24, 956-963.	1.7	222
24	Risk Factors for β-Amyloid Deposition in Healthy Aging. JAMA Neurology, 2013, 70, 600.	4.5	216
25	Differential aging of the human striatum: longitudinal evidence. American Journal of Neuroradiology, 2003, 24, 1849-56.	1.2	202
26	Age-related differences in regional brain volumes: A comparison of optimized voxel-based morphometry to manual volumetry. Neurobiology of Aging, 2009, 30, 1657-1676.	1.5	198
27	A Review of Functional Brain Imaging Correlates of Successful Cognitive Aging. Biological Psychiatry, 2011, 70, 115-122.	0.7	181
28	Age-related regional variations of the corpus callosum identified by diffusion tensor tractography. NeuroImage, 2010, 52, 20-31.	2.1	174
29	Pattern of normal age-related regional differences in white matter microstructure is modified by vascular risk. Brain Research, 2009, 1297, 41-56.	1.1	172
30	Extrahippocampal Contributions to Age Differences in Human Spatial Navigation. Cerebral Cortex, 2007, 17, 1274-1282.	1.6	165
31	Beta-Amyloid Deposition and the Aging Brain. Neuropsychology Review, 2009, 19, 436-450.	2.5	156
32	Fractal dimension analysis of the cortical ribbon in mild Alzheimer's disease. NeuroImage, 2010, 53, 471-479.	2.1	156
33	Behavioural relevance of variation in white matter microstructure. Current Opinion in Neurology, 2010, 23, 351-358.	1.8	152
34	Neural Broadening or Neural Attenuation? Investigating Age-Related Dedifferentiation in the Face Network in a Large Lifespan Sample. Journal of Neuroscience, 2012, 32, 2154-2158.	1.7	152
35	Motionâ€related artifacts in structural brain images revealed with independent estimates of inâ€scanner head motion. Human Brain Mapping, 2017, 38, 472-492.	1.9	151
36	Contribution of Callosal Connections to the Interhemispheric Integration of Visuomotor and Cognitive Processes. Neuropsychology Review, 2010, 20, 174-190.	2.5	143

#	Article	IF	CITATIONS
37	Neuroanatomical and cognitive mediators of age-related differences in episodic memory Neuropsychology, 2008, 22, 491-507.	1.0	139
38	Cortico-striatal connectivity and cognition in normal aging: A combined DTI and resting state fMRI study. NeuroImage, 2011, 55, 24-31.	2.1	135
39	A harmonized segmentation protocol for hippocampal and parahippocampal subregions: Why do we need one and what are the key goals?. Hippocampus, 2017, 27, 3-11.	0.9	130
40	Genetic and vascular modifiers of age-sensitive cognitive skills: Effects of COMT, BDNF, ApoE, and hypertension Neuropsychology, 2009, 23, 105-116.	1.0	129
41	Hippocampal Subfield Volumes: Age, Vascular Risk, and Correlation with Associative Memory. Frontiers in Aging Neuroscience, 2011, 3, 2.	1.7	128
42	Thickness of the human cerebral cortex is associated with metrics of cerebrovascular health in a normative sample of community dwelling older adults. NeuroImage, 2011, 54, 2659-2671.	2.1	122
43	Neuroanatomical Correlates of Fluid Intelligence in Healthy Adults and Persons with Vascular Risk Factors. Cerebral Cortex, 2008, 18, 718-726.	1.6	120
44	Discovery of Cyclic Acylguanidines as Highly Potent and Selective β-Site Amyloid Cleaving Enzyme (BACE) Inhibitors: Part I—Inhibitor Design and Validation. Journal of Medicinal Chemistry, 2010, 53, 951-965.	2.9	120
45	Age differences in perseveration: Cognitive and neuroanatomical mediators of performance on the Wisconsin Card Sorting Test. Neuropsychologia, 2009, 47, 1200-1203.	0.7	108
46	Interactive effects of physical activity and APOE-ε4 on BOLD semantic memory activation in healthy elders. NeuroImage, 2011, 54, 635-644.	2.1	100
47	Cerebral Blood Flow in Posterior Cortical Nodes of the Default Mode Network Decreases with Task Engagement but Remains Higher than in Most Brain Regions. Cerebral Cortex, 2011, 21, 233-244.	1.6	99
48	β-Amyloid affects frontal and posterior brain networks in normal aging. NeuroImage, 2011, 54, 1887-1895.	2.1	98
49	Age trajectories of functional activation under conditions of low and high processing demands: An adult lifespan fMRI study of the aging brain. NeuroImage, 2015, 104, 21-34.	2.1	97
50	Influence of sample size and analytic approach on stability and interpretation of brainâ€behavior correlations in taskâ€related <scp>fMRI</scp> data. Human Brain Mapping, 2021, 42, 204-219.	1.9	93
51	Age-related differences in memory-encoding fMRI responses after accounting for decline in vascular reactivity. NeuroImage, 2013, 78, 415-425.	2.1	92
52	Age, Sex and Regional Brain Volumes Predict Perceptual-Motor Skill Acquisition. Cortex, 2005, 41, 560-569.	1.1	90
53	Association of Longitudinal Cognitive Decline With Amyloid Burden in Middle-aged and Older Adults. JAMA Neurology, 2017, 74, 830.	4.5	87
54	Effects of beta-amyloid accumulation on neural function during encoding across the adult lifespan. NeuroImage, 2012, 62, 1-8.	2.1	84

#	Article	IF	CITATIONS
55	Detecting changes in human cerebral blood flow after acute exercise using arterial spin labeling: Implications for fMRI. Journal of Neuroscience Methods, 2010, 191, 258-262.	1.3	76
56	Amyloid load in nondemented brains correlates with APOE e4. Neuroscience Letters, 2010, 473, 168-171.	1.0	76
57	Age-related differences in white matter integrity and cognitive function are related to APOE status. Neurolmage, 2011, 54, 1565-1577.	2.1	75
58	An fMRI study of episodic encoding across the lifespan: Changes in subsequent memory effects are evident by middle-age. Neuropsychologia, 2013, 51, 448-456.	0.7	75
59	Velocity-resolved 3D retinal microvessel imaging using single-pass flow imaging spectral domain optical coherence tomography. Optics Express, 2009, 17, 4177.	1.7	73
60	Aging and Longitudinal Change in Perceptual-Motor Skill Acquisition in Healthy Adults. Journals of Gerontology - Series B Psychological Sciences and Social Sciences, 2005, 60, P174-P181.	2.4	70
61	Microstructure of Frontoparietal Connections Predicts Cortical Responsivity and Working Memory Performance. Cerebral Cortex, 2011, 21, 2261-2271.	1.6	67
62	BDNF val66met polymorphism affects aging of multiple types of memory. Brain Research, 2015, 1612, 104-117.	1.1	65
63	Age-related reduction of BOLD modulation to cognitive difficulty predicts poorer task accuracy and poorer fluid reasoning ability. Neurolmage, 2017, 147, 262-271.	2.1	62
64	Callosal tracts and patterns of hemispheric dominance: A combined fMRI and DTI study. NeuroImage, 2011, 54, 779-786.	2.1	58
65	A comparison of physiologic modulators of fMRI signals. Human Brain Mapping, 2013, 34, 2078-2088.	1.9	56
66	Changes in executive functions and self-efficacy are independently associated with improved usual gait speed in older women. BMC Geriatrics, 2010, 10, 25.	1.1	55
67	Low frequency fluctuations reveal integrated and segregated processing among the cerebral hemispheres. Neurolmage, 2011, 54, 517-527.	2.1	54
68	Protective effects of dibenzocyclooctadiene lignans from <i>Schisandra chinensis</i> against betaâ€amyloid and homocysteine neurotoxicity in PC12 cells. Phytotherapy Research, 2011, 25, 435-443.	2.8	53
69	Does variability in cognitive performance correlate with frontal brain volume?. NeuroImage, 2013, 64, 209-215.	2.1	53
70	Dynamic range in BOLD modulation: lifespan aging trajectories and association with performance. Neurobiology of Aging, 2017, 60, 153-163.	1.5	49
71	Diffusion Tensor Imaging Biomarkers for Traumatic Axonal Injury: Analysis of Three Analytic Methods. Journal of the International Neuropsychological Society, 2011, 17, 24-35.	1.2	47
72	Life Span Adult Faces: Norms for Age, Familiarity, Memorability, Mood, and Picture Quality. Experimental Aging Research, 2009, 35, 268-275.	0.6	44

#	Article	IF	CITATIONS
73	Differential age-related changes in the regional metencephalic volumes in humans: a 5-year follow-up. Neuroscience Letters, 2003, 349, 163-166.	1.0	43
74	Effects of age, genes, and pulse pressure on executive functions in healthy adults. Neurobiology of Aging, 2011, 32, 1124-1137.	1.5	42
75	Differential brain shrinkage over 6months shows limited association with cognitive practice. Brain and Cognition, 2013, 82, 171-180.	0.8	42
76	White matter deterioration in 15 months: latent growth curve models in healthy adults. Neurobiology of Aging, 2012, 33, 429.e1-429.e5.	1.5	41
77	Acceleration of hippocampal atrophy in a non-demented elderly population: the SNAC-K study. International Psychogeriatrics, 2010, 22, 14-25.	0.6	38
78	Age differences in speed of processing are partially mediated by differences in axonal integrity. NeuroImage, 2011, 55, 1287-1297.	2.1	38
79	Hormone replacement therapy and age-related brain shrinkage: regional effects. NeuroReport, 2004, 15, 2531-2534.	0.6	37
80	BDNF val66met polymorphism influences age differences in microstructure of the corpus callosum. Frontiers in Human Neuroscience, 2009, 3, 19.	1.0	37
81	Joint contributions of cortical morphometry and white matter microstructure in healthy brain aging: A partial least squares correlation analysis. Human Brain Mapping, 2019, 40, 5315-5329.	1.9	35
82	4 A Systems Approach to the Aging Brain: Neuroanatomic Changes, Their Modifiers, and Cognitive Correlates. , 2009, , 43-70.		34
83	Disconnexion Syndromes in Animals and Man: Part I. Neuropsychology Review, 2010, 20, 128-157.	2.5	34
84	Progress update from the hippocampal subfields group. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2019, 11, 439-449.	1.2	34
85	Discrepancies between fluid and crystallized ability in healthy adults: a behavioral marker of preclinical Alzheimer's disease. Neurobiology of Aging, 2016, 46, 68-75.	1.5	32
86	Genetic variation in homocysteine metabolism, cognition, and white matter lesions. Neurobiology of Aging, 2010, 31, 2020-2022.	1.5	30
87	Both hyper- and hypo-activation to cognitive challenge are associated with increased beta-amyloid deposition in healthy aging: A nonlinear effect. NeuroImage, 2018, 166, 285-292.	2.1	30
88	The role of hippocampal subfield volume and fornix microstructure in episodic memory across the lifespan. Hippocampus, 2019, 29, 1206-1223.	0.9	30
89	Brain-Derived Neurotrophic Factor Val66Met and Blood Glucose: A Synergistic Effect on Memory. Frontiers in Human Neuroscience, 2008, 2, 12.	1.0	29
90	Neuroanatomical and cognitive mediators of age-related differences in perceptual priming and learning Neuropsychology, 2009, 23, 475-491.	1.0	28

#	Article	IF	CITATIONS
91	Haplotypes of catechol-O-methyltransferase modulate intelligence-related brain white matter integrity. NeuroImage, 2010, 50, 243-249.	2.1	28
92	Amyloid deposition in younger adults is linked to episodic memory performance. Neurology, 2016, 87, 2562-2566.	1.5	27
93	Apolipoprotein E ε4-related thickening of the cerebral cortex modulates selective attention. Neurobiology of Aging, 2012, 33, 304-322.e1.	1.5	26
94	Genetic variation on the <i>BDNF</i> gene is not associated with differences in white matter tracts in healthy humans measured by tractâ€based spatial statistics. Genes, Brain and Behavior, 2010, 9, 886-891.	1.1	25
95	Adult Age Differences and the Role of Cognitive Resources in Perceptual–Motor Skill Acquisition: Application of a Multilevel Negative Exponential Model. Journals of Gerontology - Series B Psychological Sciences and Social Sciences, 2010, 65B, 163-173.	2.4	25
96	The effect of betaâ€amyloid on face processing in young and old adults: A multivariate analysis of the BOLD signal. Human Brain Mapping, 2015, 36, 2514-2526.	1.9	25
97	Distinct Frontoparietal Networks Set the Stage for Later Perceptual Identification Priming and Episodic Recognition Memory. Journal of Neuroscience, 2010, 30, 13272-13280.	1.7	23
98	Striatal iron content is linked to reduced fronto-striatal brain function under working memory load. NeuroImage, 2020, 210, 116544.	2.1	23
99	Greater BOLD Variability is Associated With Poorer Cognitive Function in an Adult Lifespan Sample. Cerebral Cortex, 2021, 31, 562-574.	1.6	23
100	Synergistic effects of the MTHFR C677T polymorphism and hypertension on spatial navigation. Biological Psychology, 2009, 80, 240-245.	1.1	22
101	APOEε4 Genotype and Hypertension Modify 8-year Cortical Thinning: Five Occasion Evidence from the Seattle Longitudinal Study. Cerebral Cortex, 2018, 28, 1934-1945.	1.6	21
102	Age-Related Differences in Acquisition of Perceptual-Motor Skills: Working Memory as a Mediator. Aging, Neuropsychology, and Cognition, 2008, 15, 165-183.	0.7	20
103	Contributions of White Matter Connectivity and BOLD Modulation to Cognitive Aging: A Lifespan Structure-Function Association Study. Cerebral Cortex, 2020, 30, 1649-1661.	1.6	20
104	Association between subjective memory assessment and associative memory performance: Role of ad risk factors Psychology and Aging, 2018, 33, 109-118.	1.4	20
105	The Cognitive Consequences of Structural Changes to the Aging Brain. , 2011, , 73-91.		17
106	White Matter Degradation is Associated with Reduced Financial Capacity in Mild Cognitive Impairment and Alzheimer's Disease. Journal of Alzheimer's Disease, 2017, 60, 537-547.	1.2	14
107	Genetic predisposition for inflammation exacerbates effects of striatal iron content on cognitive switching ability in healthy aging. NeuroImage, 2019, 185, 471-478.	2.1	14
108	Aerobic exercise training and neurocognitive function in cognitively normal older adults: A oneâ€year randomized controlled trial. Journal of Internal Medicine, 2022, 292, 788-803.	2.7	14

#	Article	IF	CITATIONS
109	Differential Aging Trajectories of Modulation of Activation to Cognitive Challenge in APOE ε4 Groups: Reduced Modulation Predicts Poorer Cognitive Performance. Journal of Neuroscience, 2017, 37, 6894-6901.	1.7	13
110	Beta-amyloid burden predicts poorer mnemonic discrimination in cognitively normal older adults. Neurolmage, 2020, 221, 117199.	2.1	13
111	Fragmented Pictures Revisited: Long-Term Changes in Repetition Priming, Relation to Skill Learning, and the Role of Cognitive Resources. Gerontology, 2007, 53, 148-158.	1.4	11
112	Frontoparietal cortical thickness mediates the effect of COMT ValMet polymorphism on age-associated executive function. Neurobiology of Aging, 2019, 73, 104-114.	1.5	11
113	Contribution of iron and Aβ to age differences in entorhinal and hippocampal subfield volume. Neurology, 2020, 95, e2586-e2594.	1.5	11
114	The effect of vascular health factors on white matter microstructure mediates age-related differences in executive function performance. Cortex, 2021, 141, 403-420.	1.1	11
115	Increasing beta-amyloid deposition in cognitively healthy aging predicts nonlinear change in BOLD modulation to difficulty. NeuroImage, 2018, 183, 142-149.	2.1	10
116	Age moderates the relationship between cortical thickness and cognitive performance. Neuropsychologia, 2019, 132, 107136.	0.7	10
117	The Effect of Substrate Material on Silver Nanoparticle Antimicrobial Efficacy. Journal of Nanoscience and Nanotechnology, 2010, 10, 8456-8462.	0.9	9
118	A Switchâ€On Fluorescence Assay for Bacterial βâ€Lactamases with Amyloid Fibrils as Fluorescence Enhancer and Visual Tool. Chemistry - A European Journal, 2010, 16, 13367-13371.	1.7	8
119	Exploring interhemispheric collaboration in older compared to younger adults. Brain and Cognition, 2010, 72, 218-227.	0.8	8
120	Functional Connectivity Within and Between <i>n</i> Back Modulated Regions: An Adult Lifespan Psychophysiological Interaction Investigation. Brain Connectivity, 2021, 11, 103-118.	0.8	8
121	Functional activation features of memory in successful agers across the adult lifespan. NeuroImage, 2022, 257, 119276.	2.1	8
122	A BOLD move. Neurology, 2010, 74, 1940-1941.	1.5	7
123	White Matter Microstructure Predicts Focal and Broad Functional Brain Dedifferentiation in Normal Aging. Journal of Cognitive Neuroscience, 2020, 32, 1536-1549.	1.1	7
124	Frontostriatal white matter connectivity: age differences and associations with cognition and BOLD modulation. Neurobiology of Aging, 2020, 94, 154-163.	1.5	7
125	Defaulting on the default network. Neurology, 2011, 76, 498-500.	1.5	6
126	Functional magnetic resonance imaging data of incremental increases in visuo-spatial difficulty in an adult lifespan sample. Data in Brief, 2017, 11, 54-60.	0.5	5

#	Article	IF	CITATIONS
127	Cortisol relates to regional limbic system structure in older but not younger adults. Psychoneuroendocrinology, 2019, 101, 111-120.	1.3	5
128	Cortical thickness mediates the relationship between DRD2 C957T polymorphism and executive function across the adult lifespan. Brain Structure and Function, 2021, 226, 121-136.	1.2	3
129	Velocity-resolved single-pass volumetric retinal flow imaging spectral domain optical coherence tomography. , 2009, , .		0
130	Improvement in Physical Function with Aerobic Training in Elderly Women. Medicine and Science in Sports and Exercise, 2011, 43, 514.	0.2	0
131	Current themes and issues in neuroimaging of aging processes: Editorial overview to the special issue on imaging the nonpathological aging brain. NeuroImage, 2019, 201, 116046.	2.1	0