Antonio Mecozzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1787454/publications.pdf

Version: 2024-02-01

298 papers

9,241 citations

44042 48 h-index 51562 86 g-index

300 all docs

300 docs citations

300 times ranked

3081 citing authors

#	Article	IF	CITATIONS
1	The Ergodic GN Model for Space-Division Multiplexing With Strong Mode Coupling. Journal of Lightwave Technology, 2022, 40, 3263-3276.	2.7	9
2	Optical Network Sensing: Opportunities and Challenges. , 2022, , .		2
3	Optical polarization-based sensing and localization of submarine earthquakes. , 2022, , .		2
4	Polarization Sensing with Transmission Fibers in Undersea Cables. , 2022, , .		4
5	Roadmap on multimode photonics. Journal of Optics (United Kingdom), 2022, 24, 083001.	1.0	27
6	Near-Zero Modal-Dispersion (NEMO) Coupled-Core Multi-Core Fibers. Journal of Lightwave Technology, 2021, 39, 7517-7528.	2.7	3
7	Optical polarization–based seismic and water wave sensing on transoceanic cables. Science, 2021, 371, 931-936.	6.0	124
8	Fundamental Limits to the Measurement of the Polarization of Classical Light. Journal of Lightwave Technology, 2021, 39, 2387-2396.	2.7	2
9	Polarization sensing using submarine optical cables. Optica, 2021, 8, 788.	4.8	46
10	Characterization and stability measurement of deployed multicore fibers for quantum applications. Photonics Research, 2021, 9, 1992.	3 . 4	8
11	Distributed measurement of birefringence in uncoupled multicore fibers. , 2021, , .		1
12	Seismic Sensing in Submarine Fiber Cables. , 2021, , .		4
13	A Model of the Nonlinear Interference in Space-Division Multiplexed Systems with Arbitrary Modal Dispersion. , 2021, , .		2
14	High-capacity direct-detection systems. , 2020, , 419-441.		14
15	Stokes-Space Analysis of Modal Dispersion of SDM Fibers With Mode-Dependent Loss: Theory and Experiments. Journal of Lightwave Technology, 2020, 38, 1668-1677.	2.7	24
16	Random Polarization-Mode Coupling Explains Inter-Core Crosstalk in Uncoupled Multi-Core Fibers. , 2020, , .		5
17	Dynamic Skew Measurements in a Deployed 4-Core Fiber. , 2020, , .		5
18	Role of polarization-mode coupling in the crosstalk between cores of weakly-coupled multi-core fibers. Optics Express, 2020, 28, 12847.	1.7	23

#	Article	IF	Citations
19	Enhancing the Kramers–Kronig receiver via dispersion-based spatial diversity. Optics Letters, 2020, 45, 3494.	1.7	3
20	Transmission over Randomly-Coupled 4-Core Fiber in Field-Deployed Multi-Core Fiber Cable. , 2020, , .		10
21	Transfer Matrix Characterization of Field-Deployed MCFs. , 2020, , .		5
22	Nonlinear Optics: feature issue introduction. Optical Materials Express, 2020, 10, 774.	1.6	0
23	Nonlinear Optics: feature issue introduction. Optics Express, 2020, 28, 5883.	1.7	0
24	Nonlinear propagation equations in fibers with multiple modesâ€"Transitions between representation bases. APL Photonics, 2019, 4, 022806.	3.0	9
25	Foreword to the Special Issue on the 44th European Conference on Optical Communication (ECOC) Tj ETQq $1\ 1$	0.784314 2.7	rgBT /Overlo
26	Field-Deployed Multi-Core Fiber Testbed. , 2019, , .		44
27	Kramers–Kronig receivers. Advances in Optics and Photonics, 2019, 11, 480.	12.1	76
28	Kramers–Kronig receivers: erratum. Advances in Optics and Photonics, 2019, 11, 826.	12.1	0
29	Information Capacity of Direct Detection Optical Transmission Systems. Journal of Lightwave Technology, 2018, 36, 689-694.	2.7	19
30	Kramers–Kronig PAM Transceiver and Two-Sided Polarization-Multiplexed Kramers–Kronig Transceiver. Journal of Lightwave Technology, 2018, 36, 468-475.	2.7	26
31	Kramers–Kronig Receivers for 100-km Datacenter Interconnects. Journal of Lightwave Technology, 2018, 36, 79-89.	2.7	119
32	Coherent detection with an incoherent local oscillator. Optics Express, 2018, 26, 33970.	1.7	3
33	The Kramers–Kronig Receiver. , 2018, , .		8
34	Transmission in 125-km SMF with 3.9 bit/s/Hz spectral efficiency using a single-drive MZM and a direct-detection Kramers-Kronig receiver without optical CD compensation. , 2018, , .		11
35	Kramers-Kronig coherent receiver. , 2018, , .		0
36	The Enhanced Kramers Kronig Receiver. , 2018, , .		13

#	Article	IF	CITATIONS
37	Squeezing in a nonlocal photon fluid. Physical Review A, 2017, 96, .	1.0	3
38	Embracing nonlinearity. Nature Photonics, 2017, 11, 537-539.	15.6	3
39	Polarization Multiplexing With the Kramers-Kronig Receiver. Journal of Lightwave Technology, 2017, 35, 5418-5424.	2.7	63
40	Single-wavelength, single-polarization, single- photodiode kramers-kronig detection of 440-Gb/s entropy-loaded discrete multitone modulation transmitted over 100-km SSMF., 2017,,.		16
41	Propagation effects in few-mode fibers. , 2017, , .		4
42	4 $ ilde{A}-$ 240 Gb/s Dense WDM and PDM Kramers-Kronig Detection with 125-km SSMF Transmission. , 2017, , .		13
43	Feature issue introduction: Nonlinearity mitigation for coherent transmission systems. Optics Express, 2017, 25, 4552.	1.7	2
44	Nonlinear interference noise in space-division multiplexed transmission through optical fibers. Optics Express, 2017, 25, 13055.	1.7	49
45	CLEO®/Europe-EQEC 2017 Shock Waves' Squeezing. , 2017, , .		0
46	218-Gb/s Single-Wavelength, Single-Polarization, Single-Photodiode Transmission Over 125-km of Standard Singlemode Fiber Using Kramers-Kronig Detection. , 2017, , .		51
47	Kramers-Kronig PAM transceiver. , 2017, , .		23
48	Generalized uncertainty principle and squeezing in nonlinear nonlocal photon fluids. , 2017, , .		0
49	Nonlinear Propagation in Fibers for Space Division Multiplexing. , 2017, , .		0
50	The Kramers–Kronig Receiver. , 2017, , .		0
51	Kramers–Kronig coherent receiver. Optica, 2016, 3, 1220.	4.8	494
52	Inter-modal nonlinear interference in SDM systems and its impact on information capacity. , 2016, , .		1
53	Modeling the Bit-Error-Rate Performance of Nonlinear Fiber-Optic Systems. Journal of Lightwave Technology, 2016, 34, 3482-3489.	2.7	40
54	Polarization-Related Statistics of Raman Crosstalk in Single-Mode Optical Fibers. Journal of Lightwave Technology, 2016, 34, 1191-1205.	2.7	6

#	Article	IF	Citations
55	Efficient and Accurate Modeling of Multiwavelength Propagation in SOAs: A Generalized Coupled-Mode Approach. Journal of Lightwave Technology, 2016, 34, 2188-2197.	2.7	4
56	Pulse Collision Picture of Inter-Channel Nonlinear Interference in Fiber-Optic Communications. Journal of Lightwave Technology, 2016, 34, 593-607.	2.7	70
57	Modeling of Nonlinear Propagation in Space-Division Multiplexed Fiber-Optic Transmission. Journal of Lightwave Technology, 2016, 34, 36-54.	2.7	140
58	First Monolithically Integrated Dual-Pumped Phase-Sensitive Amplifier Chip Based on a Saturated Semiconductor Optical Amplifier. IEEE Journal of Quantum Electronics, 2016, 52, 1-12.	1.0	11
59	Correlations and phase noise in NLIN- modelling and system implications. , 2016, , .		7
60	Scaling of inter-channel nonlinear interference noise and capacity with the number of strongly coupled modes in SDM systems. , 2016, , .		7
61	Investigation of an Integrated Photonic Dual-Pumped Phase-Sensitive Amplifier based on a Highly Saturated Semiconductor Optical Amplifier. , 2016, , .		О
62	Inter-Channel Nonlinear Interference Noise in Fully Loaded WDM Systems., 2016,,.		2
63	Nonlinear phase and polarization rotation noise in fully loaded WDM systems. , 2015, , .		6
64	Delay spread in strongly coupled multi-core fibers for SDM transmission. , 2015, , .		3
65	Single-chip dual-pumped SOA-based phase-sensitive amplifier at 1550nm., 2015, , .		2
66	Inter-Channel Nonlinear Interference Noise in WDM Systems: Modeling and Mitigation. Journal of Lightwave Technology, 2015, 33, 1044-1053.	2.7	142
67	The delay spread in fibers for SDM transmission: dependence on fiber parameters and perturbations. Optics Express, 2015, 23, 2196.	1.7	54
68	Intensity impulse response of SDM links. Optics Express, 2015, 23, 5738.	1.7	45
69	Interplay between Raman and polarization effects in next-generation passive optical networks. Optics Express, 2015, 23, 13924.	1.7	3
70	Analytic Study of the Modulation Response of Reflective Semiconductor Optical Amplifiers. Journal of Lightwave Technology, 2015, 33, 4367-4376.	2.7	18
71	Modeling and performance metrics of MIMO-SDM systems with different amplification schemes in the presence of mode-dependent loss. Optics Express, 2015, 23, 2203.	1.7	40
72	Optimal Polarization Launch for Raman Depletion Minimization in GPON and TWDM-PON Coexistence. , 2015, , .		5

#	Article	IF	Citations
73	Nonlinear propagation in Space-Division Multiplexed fiber-optic transmission. , 2015, , .		1
74	The Dynamics of Inter-channel Nonlinear Distortions in Fiber-Transmission Systems., 2015,,.		1
75	Optical nonlinearities in space-division multiplexed transmission. , $2015, , .$		O
76	Criticality of assumptions in the study of performance degradation caused by mode-dependent loss in SDM systems. , 2014 , , .		0
77	Nonlinear interference noise in WDM systems and approaches for its cancelation. , 2014, , .		8
78	Modeling nonlinear interference noise in fiber optic transmission. , 2014, , .		0
79	On shaping gain in the nonlinear fiber-optic channel. , 2014, , .		56
80	Modeling Raman amplification in multimode and multicore fibers. , 2014, , .		2
81	Assessing the Effects of Mode-Dependent Loss in Space-Division Multiplexed Systems. Journal of Lightwave Technology, 2014, 32, 1317-1322.	2.7	26
82	Degree of Coherence in Space-Division Multiplexed Transmission. Journal of Lightwave Technology, 2014, 32, 63-69.	2.7	5
83	Quantum Limits on the Energy Consumption of Optical Transmission Systems. Journal of Lightwave Technology, 2014, 32, 1853-1860.	2.7	13
84	Nonlinear interference noise in fibre-optic communications. , 2014, , .		1
85	Accumulation of nonlinear interference noise in fiber-optic systems. Optics Express, 2014, 22, 14199.	1.7	214
86	Time varying ISI model for nonlinear interference noise. , 2014, , .		23
87	Characterization of mode-dependent loss in SDM systems. , 2014, , .		3
88	Mitigation of inter-channel nonlinear interference in WDM systems. , 2014, , .		11
89	Analytical expression for the modulation bandwidth of a reflective semiconductor optical amplifier. , 2014, , .		1
90	Raman amplification in multimode fibers with random mode coupling. Optics Letters, 2013, 38, 1188.	1.7	30

#	Article	IF	CITATIONS
91	Random coupling between groups of degenerate fiber modes in mode multiplexed transmission. Optics Express, 2013, 21, 9484.	1.7	65
92	Modeling linear and nonlinear transmission in multi-mode fibers. Proceedings of SPIE, 2013, , .	0.8	O
93	Reduced Model for the Nonlinear Response of Reflective Semiconductor Optical Amplifiers. IEEE Photonics Technology Letters, 2013, 25, 2243-2246.	1.3	70
94	Nonlinear Equations of Propagation in Multi-Mode Fibers with Random Mode Coupling. , 2013, , .		3
95	Properties of nonlinear noise in long, dispersion-uncompensated fiber links. Optics Express, 2013, 21, 25685.	1.7	310
96	Approaching fundamental energy consumption limits in optical communications. , 2013, , .		1
97	Fundamental limits on the energy consumption in fiber-optic communications. , 2013, , .		2
98	Nonlinear Propagation in Multimode Fibers with Random Mode Coupling. , 2013, , .		1
99	Nonlinearities in space-division multiplexed transmission. , 2013, , .		1
100	Capacity Limits in Single-Mode Fiber and Scaling for Spatial Multiplexing. , 2012, , .		37
101	Stokes-space analysis of modal dispersion in fibers with multiple mode transmission. Optics Express, 2012, 20, 11718.	1.7	133
102	Coupled Manakov equations in multimode fibers with strongly coupled groups of modes. Optics Express, 2012, 20, 23436.	1.7	127
103	Polarization scattering by intra-channel collisions. Optics Express, 2012, 20, 1213.	1.7	13
104	Optical Nonlinearity in Multi-Mode Fibers with Random Mode Coupling. , 2012, , .		1
105	Nonlinear Shannon Limit in Pseudolinear Coherent Systems. Journal of Lightwave Technology, 2012, 30, 2011-2024.	2.7	286
106	Modeling of linear and nonlinear coupling in multiple-mode fiber optic transmission with MIMO signal processing. , 2012, , .		1
107	Mode-division multiplexing for next-generation optical transport. , 2012, , .		2
108	Nonlinear propagation in multi-mode fibers in the strong coupling regime. Optics Express, 2012, 20, 11673.	1.7	134

#	Article	IF	CITATIONS
109	Unified Treatment of Forward and Backward Propagating Polarized Lightwaves. Journal of Lightwave Technology, 2011, 29, 642-655.	2.7	9
110	Intra-channel nonlinearity in differentially phase-modulated transmission. Optics Express, 2011, 19, 3990.	1.7	11
111	Statistics of polarization dependent loss in an installed long-haul WDM system. Optics Express, 2011, 19, 6790.	1.7	44
112	Intrachannel nonlinearity enhancement in polarization multiplexed phase modulated systems with differential detection. Optics Letters, 2011, 36, 3903.	1.7	7
113	Autocorrelation of the polarization-dependent loss in fiber routes. Optics Letters, 2011, 36, 4005.	1.7	10
114	A Unified Theory of Intrachannel Nonlinearity in Pseudolinear Transmission., 2011,, 253-291.		4
115	Polarization Scattering by Intra-Channel Collisions in Phase-Modulated Transmission., 2011,,.		0
116	A Unified Theory of Intrachannel Nonlinearity in Pseudolinear Phase-Modulated Transmission. IEEE Photonics Journal, 2010, 2, 728-735.	1.0	9
117	Dispersion management in phase modulated optical transmission systems. , 2010, , .		3
118	Minimum-phase impulse response channels. IEEE Transactions on Communications, 2009, 57, 3529-3532.	4.9	13
119	Retrieving the full optical response from amplitude data by Hilbert transform. Optics Communications, 2009, 282, 4183-4187.	1.0	34
120	Quantum bit-error rate in plug-and-play quantum key distribution systems caused by axial magnetic fields. Fortschritte Der Physik, 2009, 57, 1084-1093.	1.5	1
121	Periodic locking of chaos in semiconductor lasers with optical feedback. Optics Communications, 2009, 282, 2917-2920.	1.0	13
122	Chaos self-synchronization in a semiconductor laser. Optics Letters, 2009, 34, 1387.	1.7	6
123	A Theory of Polarization-Mode Dispersion of Spun Fibers. Journal of Lightwave Technology, 2009, 27, 938-943.	2.7	2
124	Impairments Due to Polarization-Mode Dispersion in Chaos-Encrypted Communication Systems. IEEE Photonics Technology Letters, 2009, 21, 1387-1389.	1.3	6
125	Chaos Encrypted Optical Communication System. Fiber and Integrated Optics, 2008, 27, 308-316.	1.7	1
126	A Model for Temporal Evolution of PMD. IEEE Photonics Technology Letters, 2008, 20, 1012-1014.	1.3	7

#	Article	IF	CITATIONS
127	Effect of fiber-spinning profile on plug-and-play quantum-key distribution systems. Optics Letters, 2008, 33, 1096.	1.7	2
128	Theory of polarization mode dispersion with linear birefringence. Optics Letters, 2008, 33, 1315.	1.7	7
129	Theory of the effect of geomagnetic field on plug-and-play schemes for fiber-based quantum key distribution systems. Optics Letters, 2008, 33, 1476.	1.7	6
130	Nonintrusive characterization of long-fiber-link birefringence. Optics Letters, 2008, 33, 2740.	1.7	1
131	A non-intrusive characterization of long fiber link birefringence. , 2008, , .		0
132	Duration of PMD-induced system outages. , 2008, , .		1
133	Statistics of the polarization mode dispersion dynamics. Optics Letters, 2007, 32, 3032.	1.7	8
134	PMD penalties in long nonsoliton systems and the effect of inline filtering. IEEE Photonics Technology Letters, 2006, 18, 1179-1181.	1.3	3
135	Theoretical Characterization and System Impact of the Hinge Model of PMD. Journal of Lightwave Technology, 2006, 24, 4064-4074.	2.7	30
136	A simple analytical model for PMD temporal evolution. , 2006, , .		4
137	Pulse broadening due to polarization mode dispersion with first-order compensation. Optics Letters, 2005, 30, 1626.	1.7	6
138	Outage probabilities for fiber routes with finite number of degrees of freedom. IEEE Photonics Technology Letters, 2005, 17, 345-347.	1.3	32
139	PMD-induced penalty statistics in fiber links. IEEE Photonics Technology Letters, 2005, 17, 1013-1015.	1.3	16
140	Broad-band PMD mitigation with a single polarization controller. IEEE Photonics Technology Letters, 2005, 17, 2574-2576.	1.3	1
141	Broadband PMD mitigation using a mid-span polarization controller. , 2005, , .		0
142	A statistical theory of PMD-induced power penalty. , 2005, , .		2
143	Modelling of polarization mode dispersion in optical communications systems. Journal of Optical and Fiber Communications Research, 2004, 1, 248-265.	0.5	1
144	Polarization-Dependent Loss and Its Effect on the Signal-to-Noise Ratio in Fiber-Optic Systems. IEEE Photonics Technology Letters, 2004, 16, 671-673.	1.3	21

#	Article	IF	CITATIONS
145	Statistics of the DGD in PMD Emulators. IEEE Photonics Technology Letters, 2004, 16, 1840-1842.	1.3	30
146	Signal-to-Noise-Ratio Degradation Caused by Polarization-Dependent Loss and the Effect of Dynamic Gain Equalization. Journal of Lightwave Technology, 2004, 22, 1856-1871.	2.7	44
147	Probability density functions of the nonlinear phase noise. Optics Letters, 2004, 29, 673.	1.7	62
148	Non-Maxwellian probability density function of fibers with lumped polarization mode dispersion elements. Optics Letters, 2004, 29, 1057.	1.7	4
149	Efficient method for the extraction of the conditional probability distribution of polarization mode dispersion. Optics Letters, 2004, 29, 1482.	1.7	1
150	Characterization of the time dependence of polarization mode dispersion. Optics Letters, 2004, 29, 2599.	1.7	20
151	Study of the two-frequency moment generating function of the PMD vector. IEEE Photonics Technology Letters, 2003, 15, 1713-1715.	1.3	9
152	Noiseless amplification and signal-to-noise ratio in single-sideband transmission. Optics Letters, 2003, 28, 203.	1.7	4
153	Noiseless amplification and signal-to-noise ratio in single-sideband transmission: erratum. Optics Letters, 2003, 28, 1278.	1.7	0
154	The statistics of the frequency dependence of polarization mode dispersion in optical fibers. , 2003, , .		0
155	Accelerated Hyperfractionated Radiotherapy and Concurrent Protracted Venous Infusion Chemotherapy in Locally Advanced Head and Neck Cancer. American Journal of Clinical Oncology: Cancer Clinical Trials, 2002, 25, 431-437.	0.6	5
156	The statistics of polarization-dependent loss in optical communication systems. IEEE Photonics Technology Letters, 2002, 14, 313-315.	1.3	128
157	A new stochastic representation for the decay from a metastable state. Physica A: Statistical Mechanics and Its Applications, 2002, 315, 290-298.	1.2	0
158	Dispersion-induced nonlinearities in semiconductors. Optics Communications, 2002, 210, 173-177.	1.0	2
159	Polarization Dependent Loss and its Effect in WDM Systems. , 2002, , .		1
160	Cancellation of timing and amplitude jitter in symmetric links using highly dispersed pulses. IEEE Photonics Technology Letters, 2001, 13, 445-447.	1.3	107
161	On the capacity of intensity modulated systems using optical amplifiers. IEEE Photonics Technology Letters, 2001, 13, 1029-1031.	1.3	60
162	The Roles of Semiconductor Optical Amplifiers in Optical Networks. Optics and Photonics News, 2001, 12, 36.	0.4	19

#	Article	lF	Citations
163	APPLICATION OF A STOCHASTIC REPRESENTATION IN NUMERICAL STUDIES OF THE RELAXATION FROM A METASTABLE STATE. Computational Methods in Science and Technology, 2001, 7, 83-90.	0.3	O
164	Non-adiabatic effects in semiconductor waveguides. , 2000, , .		4
165	Quantum and semiclassical theory of noise in optical transmission lines employing in-line erbium amplifiers. Journal of the Optical Society of America B: Optical Physics, 2000, 17, 607.	0.9	8
166	Study of the frequency autocorrelation of the differential group delay in fibers with polarization mode dispersion. Optics Letters, 2000, 25, 707.	1.7	54
167	Analysis of intrachannel nonlinear effects in highly dispersed optical pulse transmission. IEEE Photonics Technology Letters, 2000, 12, 392-394.	1.3	212
168	A time-domain computer simulator of the nonlinear response of semiconductor optical amplifiers. IEEE Journal of Quantum Electronics, 2000, 36, 1072-1080.	1.0	74
169	Introduction to the issue on modeling of high data rate optical fiber communication systems. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6, 221-222.	1.9	0
170	Mean-square magnitude of all orders of polarization mode dispersion and the relation with the bandwidth of the principal states. IEEE Photonics Technology Letters, 2000, 12, 53-55.	1.3	79
171	A compensator for the effects of high-order polarization mode dispersion in optical fibers. IEEE Photonics Technology Letters, 2000, 12, 434-436.	1.3	55
172	Polarization- and interval-independent wavelength conversion at 2.5 Gb/s by means of bidirectional four-wave mixing in semiconductor optical amplifiers. IEEE Photonics Technology Letters, 2000, 12, 852-854.	1.3	8
173	System impact of intra-channel nonlinear effects in highly dispersed optical pulse transmission. IEEE Photonics Technology Letters, 2000, 12, 1633-1635.	1.3	86
174	Polarization-independent four-wave mixing in a bidirectional traveling-wave semiconductor optical amplifier. Applied Physics Letters, 1999, 75, 3914-3916.	1.5	14
175	Measurement and calculation of the critical pulsewidth for gain saturation in semiconductor optical amplifiers. Optics Communications, 1999, 164, 51-55.	1.0	45
176	The modulation response of a semiconductor laser amplifier. IEEE Journal of Selected Topics in Quantum Electronics, 1999, 5, 851-860.	1.9	63
177	Mid-span spectral inversion without frequency shift for fiber dispersion compensation: a system demonstration. IEEE Photonics Technology Letters, 1999, 11, 275-277.	1.3	25
178	Frequency-conversion efficiency independent of signal-polarization and conversion-interval using four-wave mixing in semiconductor optical amplifiers. IEEE Photonics Technology Letters, 1999, 11 , $656-658$.	1.3	19
179	Bit rate and pulse width dependence of four-wave mixing of short optical pulses in semiconductor optical amplifiers. Optics Letters, 1999, 24, 1675.	1.7	4
180	Theory of four-wave mixing. , 1999, , 281-320.		3

#	Article	IF	Citations
181	Devices for all-optical wavelength conversion and spectral inversion. IFIP Advances in Information and Communication Technology, 1999, , 25-29.	0.5	0
182	Long-term storage of a soliton bit stream using phase-sensitive amplification: effects of soliton–soliton interactions and quantum noise. Optics Communications, 1998, 157, 310-326.	1.0	15
183	Amplified spontaneous emission in soliton transmission systems employing sliding filters. Journal of Lightwave Technology, 1998, 16, 37-42.	2.7	4
184	Theory of optical amplifier chains. Journal of Lightwave Technology, 1998, 16, 745-756.	2.7	22
185	Timing jitter in wavelength-division-multiplexed filtered soliton transmission. Journal of the Optical Society of America B: Optical Physics, 1998, 15, 152.	0.9	22
186	Optical spectral inversion without frequency shift by four-wave mixing using two pumps with orthogonal polarization. IEEE Photonics Technology Letters, 1998, 10, 355-357.	1.3	24
187	On the optimization of the gain distribution of transmission lines with unequal amplifier spacing. IEEE Photonics Technology Letters, 1998, 10, 1033-1035.	1.3	39
188	Efficiency flattening and equalization of frequency up- and down-conversion using four-wave mixing in semiconductor optical amplifiers. IEEE Photonics Technology Letters, 1998, 10, 1398-1400.	1.3	47
189	Sub-Poissonian light by spatial soliton filtering. Quantum and Semiclassical Optics: Journal of the European Optical Society Part B, 1998, 10, L21-L26.	1.0	15
190	Transient and time-resolved four-wave mixing with collinear pump and probe pulses using the heterodyne technique. Journal of Optics, 1998, 7, 335-344.	0.5	2
191	Polarization-insensitive four-wave mixing in a semiconductor optical amplifier. Applied Physics Letters, 1998, 72, 2651-2653.	1.5	19
192	Noise in wavelength conversion using four-wave mixing in semiconductor optical amplifiers. Applied Physics Letters, 1997, 70, 306-308.	1.5	15
193	Pump-wavelength dependence of FWM performance in semiconductor optical amplifiers. IEEE Photonics Technology Letters, 1997, 9, 743-745.	1.3	11
194	Low-noise and very high-efficiency four-wave mixing in 1.5-mm-long semiconductor optical amplifiers. IEEE Photonics Technology Letters, 1997, 9, 746-748.	1.3	59
195	Switches and frequency converters based on cross-gain modulation in semiconductor optical amplifiers. IEEE Photonics Technology Letters, 1997, 9, 749-751.	1.3	46
196	Linearized quantum-fluctuation theory of spectrally filtered optical solitons. Optics Letters, 1997, 22, 1232.	1.7	44
197	Saturation induced by picosecond pulses in semiconductor optical amplifiers. Journal of the Optical Society of America B: Optical Physics, 1997, 14, 761.	0.9	134
198	Four-wave mixing in semiconductor optical amplifiers: a practical tool for wavelength conversion. IEEE Journal of Selected Topics in Quantum Electronics, 1997, 3, 522-528.	1.9	72

#	Article	IF	CITATIONS
199	Effects of ultrafast processes on frequency converters based on four-wave mixing in semiconductor optical amplifiers. IEEE Journal of Selected Topics in Quantum Electronics, 1997, 3, 1156-1161.	1.9	21
200	Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers. IEEE Journal of Selected Topics in Quantum Electronics, 1997, 3, 1190-1207.	1.9	176
201	Theory of nondegenerate four-wave mixing between pulses in a semiconductor waveguide. IEEE Journal of Quantum Electronics, 1997, 33, 545-555.	1.0	44
202	Subpicosecond heterodyne four-wave mixing experiments on InGaAsP semiconductor laser amplifiers. Optics Communications, 1997, 139, 117-124.	1.0	6
203	Very high efficiency fourâ€wave mixing in a single semiconductor travelingâ€wave amplifier. Applied Physics Letters, 1996, 68, 2186-2188.	1.5	49
204	Small-signal theory of wavelength converters based on cross-gain modulation in semiconductor optical amplifiers. IEEE Photonics Technology Letters, 1996, 8, 1471-1473.	1.3	39
205	Frequency converters based on FWM in traveling-wave optical amplifiers: Theoretical aspects. Fiber and Integrated Optics, 1996, 15, 243-256.	1.7	8
206	Timing jitter in soliton transmission with sliding filters. Optics Letters, 1996, 21, 402.	1.7	27
207	Transient four-wave mixing with a collinear pump and probe. Optics Letters, 1996, 21, 1017.	1.7	16
208	Theory of the ultrafast optical response of active semiconductor waveguides. Journal of the Optical Society of America B: Optical Physics, 1996, 13, 1803.	0.9	105
209	Theory of heterodyne pump–probe experiments with femtosecond pulses. Journal of the Optical Society of America B: Optical Physics, 1996, 13, 2437.	0.9	39
210	Performance evaluation of very long span direct detection intensity and polarization modulated systems. Journal of Lightwave Technology, 1996, 14, 261-272.	2.7	8
211	Highly nondegenerate four-wave mixing in semiconductor laser amplifiers. , 1996, , .		2
212	Single-channel transmissions over very long optical links with zero average chromatic dispersion adopting NRZ intensity and polarisation modulation. Optics Communications, 1996, 123, 89-93.	1.0	0
213	Time resolved fourâ€wave mixing technique to measure the ultrafast coherent dynamics in semiconductor optical amplifiers. Applied Physics Letters, 1996, 68, 3236-3238.	1.5	30
214	Spectral effects in short pulse pumpâ€probe measurements. Applied Physics Letters, 1996, 68, 449-451.	1.5	20
215	Nonlinear evolution of polarization in longâ€haul fiber links and performance evaluation of polarization modulation systems. Microwave and Optical Technology Letters, 1995, 9, 358-361.	0.9	0
216	High saturation behavior of the fourâ€wave mixing signal in semiconductor amplifiers. Applied Physics Letters, 1995, 66, 1184-1186.	1.5	20

#	Article	IF	Citations
217	Efficiency of frequency translators based on four-wave mixing in semiconductor optical amplifiers. Journal of Optics, 1995, 4, 385-389.	0.5	1
218	Light depolarisation in long fibre links. Electronics Letters, 1995, 31, 473-475.	0.5	3
219	Light depolarization owing to amplified spontaneous emission and Kerr nonlinearity in long-haul fiber links close to zero dispersion. Optics Letters, 1995, 20, 1465.	1.7	6
220	Soliton transmission control with semiconductor amplifiers. Optics Letters, 1995, 20, 1616.	1.7	29
221	Soliton transmission control by Butterworth filters. Optics Letters, 1995, 20, 1859.	1.7	29
222	Efficiency and noise performance of wavelength converters based on FWM in semiconductor optical amplifiers. IEEE Photonics Technology Letters, 1995, 7, 357-359.	1.3	90
223	Fourâ€wave mixing efficiency in traveling wave semiconductor optical amplifiers at high saturation. Applied Physics Letters, 1995, 67, 2753-2755.	1.5	27
224	Four-wave mixing in traveling-wave semiconductor amplifiers. IEEE Journal of Quantum Electronics, 1995, 31, 689-699.	1.0	119
225	Soliton Transmission Control with Semiconductor Amplifiers. , 1995, , .		O
226	4.3 terahertz fourâ€wave mixing spectroscopy of InGaAsP semiconductor amplfiers. Applied Physics Letters, 1994, 65, 2633-2635.	1.5	43
227	Investigation of carrier heating and spectral hole burning in semiconductor amplifiers by highly nondegenerate fourâ€wave mixing. Applied Physics Letters, 1994, 64, 2492-2494.	1.5	48
228	Signal propagation in the presence of side-band instability in long fiber links. Microwave and Optical Technology Letters, 1994, 7, 537-539.	0.9	2
229	Comparison of different DFB laser models within the European COST 240 collaboration. IEE Proceedings: Optoelectronics, 1994, 141, 82-88.	0.8	14
230	Nonlinearities in high-index-coupled lambda /4-shifted distributed-feedback semiconductor lasers. IEE Proceedings: Optoelectronics, 1994, 141, 8-12.	0.8	0
231	Limits to long-haul coherent transmission set by the Kerr nonlinearity and noise of the in-line amplifiers. Journal of Lightwave Technology, 1994, 12, 1993-2000.	2.7	83
232	Cavity standing-wave and gain compression coefficient in semiconductor lasers. Optics Letters, 1994, 19, 640.	1.7	7
233	Analytical theory of four-wave mixing in semiconductor amplifiers. Optics Letters, 1994, 19, 892.	1.7	64
234	Long-term storage of a soliton bit stream by use of phase-sensitive amplification. Optics Letters, 1994, 19, 2050.	1.7	54

#	Article	IF	CITATIONS
235	Long-distance transmission at zero dispersion: combined effect of the Kerr nonlinearity and the noise of the in-line amplifiers. Journal of the Optical Society of America B: Optical Physics, 1994, 11, 462.	0.9	64
236	Response function for gain and refractive index dynamics in active semiconductor waveguides. Applied Physics Letters, 1994, 65, 1736-1738.	1.5	35
237	Evolution of signals in longâ€haul fiber links. Microwave and Optical Technology Letters, 1993, 6, 675-677.	0.9	0
238	Long-distance soliton transmission with filtering. Journal of the Optical Society of America B: Optical Physics, 1993, 10, 2321.	0.9	17
239	Sideband instability induced by periodic power variation in long-distance fiber links. Optics Letters, 1993, 18, 1499.	1.7	162
240	Noise of mode-locked lasers. IEEE Journal of Quantum Electronics, 1993, 29, 983-996.	1.0	429
241	Nearly degenerate four-wave mixing in distributed feedback semiconductor lasers operating above threshold. IEEE Journal of Quantum Electronics, 1993, 29, 1477-1487.	1.0	40
242	Pulse-to-pulse frequency jitter in diode lasers and soliton transmission. IEEE Photonics Technology Letters, 1993, 5, 1455-1458.	1.3	5
243	Transient statistics for two-mode gas ring lasers. Physical Review A, 1993, 48, 2426-2432.	1.0	2
244	Error probability of amplified IMDD systems at zero dispersion. Electronics Letters, 1993, 29, 2136.	0.5	15
245	Phase noise of fourâ€wave mixing in semiconductor lasers. Applied Physics Letters, 1992, 60, 2454-2456.	1.5	62
246	Modulation and filtering control of soliton transmission. Journal of the Optical Society of America B: Optical Physics, 1992, 9, 1350.	0.9	73
247	Effect of filters on soliton interactions in wavelength-division-multiplexing systems. Optics Letters, 1992, 17, 988.	1.7	47
248	Long-term storage of a bit stream of solitons. Optics Letters, 1992, 17, 1500.	1.7	45
249	Transient multimode dynamics in nearly single-mode lasers. IEEE Journal of Quantum Electronics, 1991, 27, 332-343.	1.0	21
250	Injection locking in distributed feedback semiconductor lasers. IEEE Journal of Quantum Electronics, 1991, 27, 1688-1695.	1.0	111
251	Soliton transmission control. Optics Letters, 1991, 16, 1841.	1.7	394
252	Gain and noise in rare-earth-doped optical fibers. Journal of the Optical Society of America B: Optical Physics, 1991, 8, 134.	0.9	9

#	Article	IF	CITATIONS
253	Theoretical analysis of optical pulse position modulation communication systems using semiconductor lasers. Optical and Quantum Electronics, 1991, 23, 1077-1089.	1.5	3
254	Noise and Transient Dynamics in Semiconductor Lasers. Springer Proceedings in Physics, 1991, , 259-292.	0.1	8
255	Novel measurement technique of \hat{l}_{\pm} factor in DFB semiconductor lasers by injection locking. Electronics Letters, 1990, 26, 997.	0.5	49
256	Marcoscopic effects of quantum fluctuations: statistical excitation of a side-mode in laser switching. , 1990, , .		0
257	Parametric amplification and signal-to-noise ration in optical transmission lines. Optics Communications, 1990, 75, 256-262.	1.0	14
258	Statistical distribution of trajectories in the time-intensity plane during semiconductor-laser gain switching. Physical Review Letters, 1990, 64, 3003-3006.	2.9	33
259	Injection locking properties of DFB semiconductor lasers. , 1990, , .		3
260	Quasi-deterministic theory of semiconductor-laser gain switching. Optics Letters, 1990, 15, 1067.	1.7	24
261	Connection between linewidth saturation and power increase of transverse magnetic mode in ridge distributed feedback lasers. Applied Physics Letters, 1989, 55, 2582-2584.	1.5	3
262	Analysis of transients in pulse modulated semiconductor lasers biased near threshold. Applied Physics Letters, 1989, 55, 769-771.	1.5	25
263	Squeezed-state Superpositions in a Damped Nonlinear Oscillator. Journal of Modern Optics, 1989, 36, 1607-1614.	0.6	24
264	Experimental measurements and theory of first passage time in pulse-modulated semiconductor lasers. IEEE Journal of Quantum Electronics, 1989, 25, 1440-1449.	1.0	47
265	Parametric amplification and squeezed-light generation in a nonlinear directional coupler. Optics Letters, 1988, 13, 925.	1.7	12
266	Non-Gaussian statistics of frequency fluctuations in line-narrowed semiconductor lasers. IEEE Journal of Quantum Electronics, 1988, 24, 1985-1988.	1.0	3
267	Time jitter in multimode Fabry–Perot laser diodes. Applied Physics Letters, 1988, 53, 2362-2364.	1.5	18
268	Passage time statistics in semiconductor laser turn on. Physical Review A, 1988, 38, 3136-3138.	1.0	45
269	Experimental observation of time jitter in semiconductor laser turnâ€on. Applied Physics Letters, 1988, 52, 2203-2204.	1.5	43
270	Four-photon squeezed states: An exactly solvable model. Physical Review A, 1988, 37, 4778-4784.	1.0	26

#	Article	IF	Citations
271	Statistics of phase noise in single-mode semiconductor lasers: free-running, weak external feedback and injection-locking configurations. Electronics Letters, 1987, 23, 1183.	0.5	3
272	Distinguishable quantum states generated via nonlinear birefringence. Physical Review Letters, 1987, 58, 1055-1058.	2.9	132
273	All-optical switching and intensity discrimination by polarization instability in periodically twisted fiber filters. Optics Letters, 1987, 12, 275.	1.7	49
274	Spatial instabilities, all-optical limiting, and thresholding in nonlinear distributed-feedback devices. Optics Letters, 1987, 12, 1008.	1.7	37
275	Generation of macroscopically distinguishable quantum states and detection by the squeezed-vacuum technique. Journal of the Optical Society of America B: Optical Physics, 1987, 4, 1700.	0.9	111
276	An All-optical Mechanism of Sub-poissonian Light Generation. Journal of Modern Optics, 1987, 34, 1129-1134.	0.6	1
277	Squeezed vacuum in the detection of macroscopically distinguishable quantum states. Physics Letters, Section A: General, Atomic and Solid State Physics, 1987, 121, 101-104.	0.9	14
278	Theory of chemical fluctuations in thermal explosions. Physical Review A, 1985, 31, 2454-2459.	1.0	13
279	Nearly degenerate four wave mixing in DFB lasers. , 0, , .		1
280	Nonlinearly Induced Chromatic Dispersion Compensation In Long Haul Fiber Links. , 0, , .		0
281	Ultrafast gain and refractive index dynamics of semiconductor amplifiers measured by four-wave mixing. , 0, , .		1
282	Increase of signal to noise ratio in wavelength conversion using four-wave mixing in semiconductor optical amplifiers. , 0, , .		0
283	Frequency converters, spectral inverters and switches based on four-wave mixing in semiconductor optical amplifiers. , 0, , .		2
284	Theoretical evaluation of the noise growth and of the system performance for a link constituted by a chain of N optical amplifiers with in-line filters. , 0 , , .		2
285	Pump-power dependence of intraband scattering times in semiconductor optical amplifiers. , 0, , .		0
286	Efficiency equalization of up- and down-conversion four-wave mixing in a semiconductor optical amplifier using two pumps with orthogonal polarization. , 0 , , .		0
287	Nearly Degenerate Four-Wave Mixing in Semiconductor Optical Amplifiers. , 0, , .		0
288	Gain saturation effects in a cascade of semiconductor optical amplifiers. , 0, , .		1

#	Article	IF	CITATIONS
289	Applications of four-wave mixing in semiconductor optical amplifiers. , 0, , .		8
290	Dispersion compensation using mid-span spectral inversion without frequency shift. , 0, , .		0
291	Dispersion-induced non-linearities in semiconductors. , 0, , .		0
292	Semiconductor devices for all-optical signal processing: just how fast can they go?., 0,,.		0
293	Reduction of the cross-phase modulation impairment in wavelength division multipled systems with dispersion management., 0,,.		1
294	Saturation properties of four-wave mixing between short optical pulses in semiconductor optical amplifiers, $0, \dots, 0$		0
295	Bi-directional, polarization-independent four-wave mixing in semiconductor optical amplifiers. , 0, , .		0
296	Limits on the spectral efficiency of intensity modulated direct detection systems with optical amplifiers. , 0 , , .		2
297	The interplay between nonlinear effects in modern optical communications systems. , 0, , .		0
298	Noise enhancement caused by polarization dependent loss and the effect of dynamic gain equalizers. , $0, , .$		1