
Nicolas Rispail

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1787195/publications.pdf Version: 2024-02-01

NICOLAS RISDAIL

#	Article	IF	CITATIONS
1	Comparative genomics of MAP kinase and calcium–calcineurin signalling components in plant and human pathogenic fungi. Fungal Genetics and Biology, 2009, 46, 287-298.	0.9	302
2	Biotechnology approaches to overcome biotic and abiotic stress constraints in legumes. Euphytica, 2006, 147, 1-24.	0.6	214
3	A Nitrogen Response Pathway Regulates Virulence Functions in <i>Fusarium oxysporum</i> via the Protein Kinase TOR and the bZIP Protein MeaB Â. Plant Cell, 2010, 22, 2459-2475.	3.1	207
4	Achievements and Challenges in Legume Breeding for Pest and Disease Resistance. Critical Reviews in Plant Sciences, 2015, 34, 195-236.	2.7	153
5	Putative role of gamma -aminobutyric acid (GABA) as a long-distance signal in up-regulation of nitrate uptake in Brassica napus L Plant, Cell and Environment, 2004, 27, 1035-1046.	2.8	151
6	Genetics of Symbiosis in Lotus japonicus: Recombinant Inbred Lines, Comparative Genetic Maps, and Map Position of 35 Symbiotic Loci. Molecular Plant-Microbe Interactions, 2006, 19, 80-91.	1.4	94
7	Plant resistance to parasitic plants: molecular approaches to an old foe. New Phytologist, 2007, 173, 703-712.	3.5	89
8	<i>Fusarium oxysporum</i> Ste12 Controls Invasive Growth and Virulence Downstream of the Fmk1 MAPK Cascade. Molecular Plant-Microbe Interactions, 2009, 22, 830-839.	1.4	87
9	Breeding approaches for crenate broomrape (<i>Orobanche crenata</i> Forsk.) management in pea (<i>Pisum sativum</i> L.). Pest Management Science, 2009, 65, 553-559.	1.7	71
10	Quantum Dot and Superparamagnetic Nanoparticle Interaction with Pathogenic Fungi: Internalization and Toxicity Profile. ACS Applied Materials & amp; Interfaces, 2014, 6, 9100-9110.	4.0	71
11	Model legumes contribute to faba bean breeding. Field Crops Research, 2010, 115, 253-269.	2.3	64
12	The two omponent histidine kinase Fhk1 controls stress adaptation and virulence of <i>Fusarium oxysporum</i> . Molecular Plant Pathology, 2010, 11, 395-407.	2.0	62
13	Physical and Chemical Barriers in Root Tissues Contribute to Quantitative Resistance to Fusarium oxysporum f. sp. pisi in Pea. Frontiers in Plant Science, 2018, 9, 199.	1.7	58
14	Genetic Diversity and Population Structure Among Oat Cultivars and Landraces. Plant Molecular Biology Reporter, 2013, 31, 1305-1314.	1.0	55
15	A detailed evaluation method to identify sources of quantitative resistance to <i>Fusarium oxysporum</i> f. sp. <i>pisi</i> race 2 within a <i>Pisum</i> spp. germplasm collection. Plant Pathology, 2012, 61, 532-542.	1.2	52
16	The homeodomain transcription factor Ste12. Communicative and Integrative Biology, 2010, 3, 327-332.	0.6	45
17	Genome-wide association study for crown rust (Puccinia coronata f. sp. avenae) and powdery mildew (Blumeria graminis f. sp. avenae) resistance in an oat (Avena sativa) collection of commercial varieties and landraces. Frontiers in Plant Science, 2015, 6, 103.	1.7	43
18	Genome-wide identification and comparison of legume MLO gene family. Scientific Reports, 2016, 6, 32673.	1.6	41

NICOLAS RISPAIL

#	Article	IF	CITATIONS
19	Identification of the Main Toxins Isolated from <i>Fusarium oxysporum</i> f. sp. <i>pisi</i> Race 2 and Their Relation with Isolates' Pathogenicity. Journal of Agricultural and Food Chemistry, 2014, 62, 2574-2580.	2.4	40
20	Phenolic Compounds: extraction and analysis. , 2005, , 349-354.		32
21	Higher rust resistance and similar yield of oat landraces versus cultivars under high temperature and drought. Agronomy for Sustainable Development, 2017, 37, 1.	2.2	31
22	Legume breeding for rust resistance: lessons to learn from the model Medicago truncatula. Euphytica, 2011, 180, 89-98.	0.6	28
23	ldentification of Sources of Quantitative Resistance to <i>Fusarium oxysporum</i> f. sp. <i>medicaginis</i> in <i>Medicago truncatula</i> . Plant Disease, 2014, 98, 667-673.	0.7	27
24	Salicylic acid regulates polyamine biosynthesis during drought responses in oat. Plant Signaling and Behavior, 2019, 14, e1651183.	1.2	24
25	Pisatin involvement in the variation of inhibition of <i>Fusarium oxysporum</i> f. sp. <i>pisi</i> spore germination by root exudates of <i>Pisum</i> spp. germplasm. Plant Pathology, 2018, 67, 1046-1054.	1.2	22
26	Parasitic plant infection is partially controlled through symbiotic pathways. Weed Research, 2010, 50, 76-82.	0.8	21
27	Deciphering Root Architectural Traits Involved to Cope With Water Deficit in Oat. Frontiers in Plant Science, 2019, 10, 1558.	1.7	19
28	Drought resistance in oat involves ABA-mediated modulation of transpiration and root hydraulic conductivity. Environmental and Experimental Botany, 2021, 182, 104333.	2.0	18
29	A nitrogen response pathway regulates virulence in plant pathogenic fungi. Plant Signaling and Behavior, 2010, 5, 1623-1625.	1.2	17
30	Resistance reaction of Medicago truncatula genotypes to Fusarium oxysporum: effect of plant age, substrate and inoculation method. Crop and Pasture Science, 2015, 66, 506.	0.7	17
31	Rapid and Efficient Estimation of Pea Resistance to the Soil-Borne Pathogen Fusarium oxysporum by Infrared Imaging. Sensors, 2015, 15, 3988-4000.	2.1	12
32	Multi-Environmental Trials Reveal Genetic Plasticity of Oat Agronomic Traits Associated With Climate Variable Changes. Frontiers in Plant Science, 2018, 9, 1358.	1.7	12
33	Secondary metabolite profiling of the model legume Lotus japonicus during its symbiotic interaction with Mesorhizobium loti. Symbiosis, 2010, 50, 119-128.	1.2	10
34	Population genomics of Mediterranean oat (A. sativa) reveals high genetic diversity and three loci for heading date. Theoretical and Applied Genetics, 2021, 134, 2063-2077.	1.8	10
35	Genomic regions associated with herbicide tolerance in a worldwide faba bean (Vicia faba L.) collection. Scientific Reports, 2022, 12, 158.	1.6	10
36	Editorial: Advances in Legume Research. Frontiers in Plant Science, 2018, 9, 501.	1.7	8

#	Article	IF	CITATIONS
37	Genetic Dissection of Heat Stress Tolerance in Faba Bean (Vicia faba L.) Using GWAS. Plants, 2022, 11, 1108.	1.6	7
38	Secondary metabolite profiling. , 2005, , 341-348.		5
39	Deciphering Main Climate and Edaphic Components Driving Oat Adaptation to Mediterranean Environments. Frontiers in Plant Science, 2021, 12, 780562.	1.7	3