
Rebeca MartÃ-nez VÃ;zquez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1786489/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Femtosecond laser micromachining of integrated glass devices for highâ€order harmonic generation. International Journal of Applied Glass Science, 2022, 13, 162-170.	1.0	3
2	Editorial for the Special Issue on New Trends and Applications in Femtosecond Laser Micromachining. Micromachines, 2022, 13, 150.	1.4	0
3	Time-Resolved Imaging of Femtosecond Laser-Induced Plasma Expansion in a Nitrogen Microjet. Applied Sciences (Switzerland), 2022, 12, 1978.	1.3	0
4	Effects of Thermal Annealing on Femtosecond Laser Micromachined Glass Surfaces. Micromachines, 2021, 12, 180.	1.4	17
5	Rapid Prototyping of 3D Biochips for Cell Motility Studies Using Two-Photon Polymerization. Frontiers in Bioengineering and Biotechnology, 2021, 9, 664094.	2.0	10
6	Integrated Filter for the Separation between XUV and IR Beam in High-order Harmonic Generation in a chip. , 2021, , .		0
7	Intermediate filaments ensure resiliency of single carcinoma cells, while active contractility of the actin cortex determines their invasive potential. New Journal of Physics, 2021, 23, 083028.	1.2	2
8	Modeling femtosecond pulse propagation and high harmonics generation in hollow core fibers. EPJ Web of Conferences, 2021, 255, 11005.	0.1	1
9	High-order harmonic generation in a microfluidic glass device. JPhys Photonics, 2020, 2, 024005.	2.2	20
10	Femtosecond Laser-Micromachining of Glass Micro-Chip for High Order Harmonic Generation in Gases. Micromachines, 2020, 11, 165.	1.4	8
11	Microfluidics. , 2020, , 493-526.		8
12	High-order Harmonic Generation in Microfluidic Femtosecond Laser Micromachined Devices for Ultrafast X-ray Spectroscopy. , 2020, , .		0
13	High-order Harmonic Generation in Femtosecond Laser Micromachined Devices for Ultrafast X-ray Spectroscopy. , 2020, , .		0
14	High-order Harmonic Generation in Femtosecond Laser Micromachined Devices for Ultrafast X-ray Spectroscopy. , 2020, , .		0
15	High-order Harmonic Generation in Femtosecond Laser Micromachined Microfluidic Glass Devices for Ultrafast X-ray Spectroscopy. , 2020, , .		0
16	Normal epithelial and triple-negative breast cancer cells show the same invasion potential in rigid spatial confinement. New Journal of Physics, 2019, 21, 083016.	1.2	7
17	High-order harmonic generation in femtosecond laser micromachined devices. EPJ Web of Conferences, 2019, 205, 02007.	0.1	0
18	Direct writing of optical microresonators in a lab-on-a-chip for label-free biosensing. Lab on A Chip, 2019, 19, 1985-1990.	3.1	34

#	Article	IF	CITATIONS
19	1.9 fs Deep-UV Pulses from Third-Harmonic Generation in Argon. , 2019, , .		0
20	Plastic Lab-on-Chip for the Optical Manipulation of Single Cells. , 2019, , 339-363.		2
21	Generation of deep ultraviolet sub-2-fs pulses. Optics Letters, 2019, 44, 1308.	1.7	47
22	Three-dimensional femtosecond laser processing for lab-on-a-chip applications. Nanophotonics, 2018, 7, 613-634.	2.9	134
23	Cell Migration through a Confined Micro-Environment: An Attempt to Understand the Motion of Metastatic Cells. Biophysical Journal, 2018, 114, 327a.	0.2	0
24	Disposable Optical Stretcher Fabricated by Microinjection Moulding. Micromachines, 2018, 9, 388.	1.4	15
25	Microfluidic Based Optical Microscopes on Chip. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2018, 93, 987-996.	1.1	53
26	Editorial for the Special Issue on Ultrafast Laser Fabrication for Lab-on-a-Chip. Micromachines, 2018, 9, 38.	1.4	0
27	Particle Manipulation by Optical Forces in Microfluidic Devices. Micromachines, 2018, 9, 200.	1.4	36
28	High-bandwidth density optically interconnected terabit/s boards. , 2018, , .		1
29	High-order Harmonic Generation in Femtosecond laser-Micromachined Devices. , 2018, , .		0
30	Optofluidic Devices for Mechanical Probing and Imaging of Cells by Laser Light. , 2018, , .		0
31	Fabrication and assembling of a microfluidic optical stretcher polymeric chip combining femtosecond laser and micro injection molding technologies. , 2017, , .		1
32	Imaging cytometry in a plastic ultra-mobile system. Proceedings of SPIE, 2017, , .	0.8	1
33	Rapid Prototyping of Plastic Lab-on-a-Chip by Femtosecond Laser Micromachining and Removable Insert Microinjection Molding. Micromachines, 2017, 8, 328.	1.4	21
34	Highly integrated lab-on-a-chip for fluorescence detection. Optical Engineering, 2016, 55, 097102.	0.5	8
35	Microfluidics. , 2016, , 310-334.		8
36	Femtosecond laser fabrication of optofluidic devices for single cell manipulation. MATEC Web of Conferences, 2015, 32, 02001.	0.1	0

Rebeca MartÃnez VÃizquez

#	Article	IF	CITATIONS
37	An optofluidic constriction chip for monitoring metastatic potential and drug response of cancer cells. Integrative Biology (United Kingdom), 2015, 7, 477-484.	0.6	24
38	An integrated optofluidic device for single-cell sorting driven by mechanical properties. Lab on A Chip, 2015, 15, 1262-1266.	3.1	55
39	Femtosecond fiber laser welding of PMMA. Proceedings of SPIE, 2015, , .	0.8	О
40	Sorting on the basis of deformability of single cells in a femtosecond laser fabricated optofluidic device. , 2015, , .		1
41	Welding of PMMA by a femtosecond fiber laser. Optics Express, 2015, 23, 4114.	1.7	39
42	Investigation of temperature effect on cell mechanics by optofluidic microchips. Biomedical Optics Express, 2015, 6, 2991.	1.5	16
43	Dual Regimes of Ion Migration in High Repetition Rate Femtosecond Laser Inscribed Waveguides. IEEE Photonics Technology Letters, 2015, 27, 1068-1071.	1.3	26
44	Control of waveguide properties by tuning femtosecond laser induced compositional changes. Applied Physics Letters, 2014, 105, .	1.5	27
45	Femtosecond laser fabricated microfluorescence-activated cell sorter for single cell recovery. , 2014, , .		Ο
46	Fresnel lenses fabricated by femtosecond laser micromachining on polymer one-dimensional photonic crystal. Optical Engineering, 2014, 53, 071813.	0.5	2
47	Maskless, fast and highly selective etching of fused silica with gaseous fluorine and gaseous hydrogen fluoride. Journal of Micromechanics and Microengineering, 2014, 24, 025004.	1.5	2
48	Straightforward 3D hydrodynamic focusing in femtosecond laser fabricated microfluidic channels. Lab on A Chip, 2014, 14, 1826-1833.	3.1	69
49	Optical manipulation of single cells in femtosecond laser fabricated lab-on-chip. , 2013, , .		Ο
50	Solvent vapor treatment controls surface wettability in PMMA femtosecond-laser-ablated microchannels. Microfluidics and Nanofluidics, 2013, 14, 171-176.	1.0	22
51	An integrated fluorescence activated cell sorter fabricated by femtosecond laser micromachining. MATEC Web of Conferences, 2013, 8, 05007.	0.1	Ο
52	Fresnel Lenses fabricated by femtosecond laser micromachining on Polymer 1D Photonic Crystal. MATEC Web of Conferences, 2013, 8, 06010.	0.1	0
53	Plastic optofluidic chip fabricated by femtosecond laser ablation. , 2012, , .		1
54	Optofluidic integrated cell sorter fabricated by femtosecond lasers. Lab on A Chip, 2012, 12, 3779.	3.1	86

Rebeca MartÃnez VÃizquez

#	Article	IF	CITATIONS
55	Micromanufacturing in Fused Silica via Femtosecond Laser Irradiation Followed by Gas-Phase Chemical Etching. Micromachines, 2012, 3, 604-614.	1.4	5
56	Femtosecond laser microstructuring for polymeric labâ€onâ€chips. Journal of Biophotonics, 2012, 5, 687-702.	1.1	56
57	Modulation-frequency encoded multi-color fluorescent DNA analysis in an optofluidic chip. Lab on A Chip, 2011, 11, 679-683.	3.1	29
58	Fabrication of binary Fresnel lenses in PMMA by femtosecond laser surface ablation. Optics Express, 2011, 19, 11597.	1.7	32
59	Femtosecond laser writing of waveguides in zinc phosphate glasses [Invited]. Optical Materials Express, 2011, 1, 845.	1.6	55
60	Femtosecond laser micromachining for the realization of fully integrated optofluidic devices. , 2011, ,		0
61	Fabrication of binary Fresnel lenses in PMMA by femtosecond laser micromachining. , 2011, , .		1
62	High-resolution, Multi-wavelength Fluorescent DNA Analysis in an Optofluidic Chip. , 2010, , .		0
63	Highâ€resolution electrophoretic separation and integratedâ€waveguide excitation of fluorescent DNA molecules in a lab on a chip. Electrophoresis, 2010, 31, 2584-2588.	1.3	17
64	Selective Iterative Etching of Fused Silica with Gaseous Hydrofluoric Acid. Journal of Physical Chemistry C, 2010, 114, 18712-18716.	1.5	11
65	Femtosecond laser written optical waveguide amplifier in phospho-tellurite glass. Optics Express, 2010, 18, 20289.	1.7	70
66	Optical sensing in microfluidic lab-on-a-chip by femtosecond-laser-written waveguides. Analytical and Bioanalytical Chemistry, 2009, 393, 1209-1216.	1.9	26
67	Integration of femtosecond laser written optical waveguides in a lab-on-chip. Lab on A Chip, 2009, 9, 91-96.	3.1	119
68	Integration of micro-optics and microfluidics in a glass chip by fs-laser for optofluidic applications. Proceedings of SPIE, 2009, , .	0.8	1
69	Three-dimensional photonic devices fabricated by ultrafast lasers for optical sensing in lab-on-a-chip. , 2009, , .		2
70	Femtosecond laser fabrication for the integration of optical sensors in microfluidic lab-on-chip devices. Springer Series in Chemical Physics, 2009, , 973-975.	0.2	5
71	Fluorescence monitoring of microchip capillary electrophoresis separation with monolithically integrated waveguides. Optics Letters, 2008, 33, 2503.	1.7	29
72	Femtosecond Laser Microfabrication of an Integrated Device for Optical Release and Sensing of Bioactive Compounds. Sensors, 2008, 8, 6595-6604.	2.1	7

#	Article	IF	CITATIONS
73	Integrated optical sensing in a lab-on-chip by femtosecond laser written waveguides. , 2008, , .		0
74	Integration of femtosecond laser fabricated optical waveguides and microfluidic channels for lab-on-chip devices. , 2007, , .		0
75	Interaction between femtosecond laser pulses andCdSxSe1â^'xquantum dots in glasses. Physical Review B, 2007, 76, .	1.1	9
76	Integration of optical waveguides and microfluidic channels fabricated by femtosecond laser irradiation. , 2007, , .		1
77	Fabrication of photonic devices in nanostructured glasses by femtosecond laser pulses. Optics Express, 2007, 15, 12628.	1.7	29
78	Integration of optical waveguides and microfluidic channels both fabricated by femtosecond laser irradiation. Applied Physics Letters, 2007, 90, 231118.	1.5	133
79	Simulations of doped YAl3(BO3)4 crystals shape. Journal of Crystal Growth, 2005, 275, e909-e913.	0.7	0
80	Fabrication of 3D photonic devices at 1.55â€[micro sign]m wavelength by femtosecond Ti:Sapphire oscillator. Electronics Letters, 2005, 41, 315.	0.5	14
81	Fabrication of guiding structures in nanostructured tin–silicate glass ceramic by a focused femtosecond laser. Journal of Non-Crystalline Solids, 2005, 351, 1855-1859.	1.5	7
82	Er3+ doped YAl3(BO3)4 single crystals: determination of the refractive indices. Optical Materials, 2004, 26, 231-233.	1.7	18
83	Optical properties of Dy3+doped yttrium–aluminium borate. Journal of Physics Condensed Matter, 2004, 16, 465-471.	0.7	36
84	Influence of neutral environment in the growth of Cr-doped LiCAF/LiSAF crystals: X-ray powder diffraction and EPR analysis. Journal of Crystal Growth, 2002, 237-239, 894-898.	0.7	4
85	Peculiarities of synthesis and flux growth of neodymium yttrium aluminum borate crystals. Materials Research Bulletin, 2001, 36, 2199-2205.	2.7	4