Ilona Jaspers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1786217/publications.pdf

Version: 2024-02-01

76326 82547 5,937 107 40 72 citations h-index g-index papers 109 109 109 9737 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Site $\hat{a} \in \mathbb{S}$ pecific detection and differential levels of immune mediators in the sinonasal mucosa. International Forum of Allergy and Rhinology, 2023, 13, 80-84.	2.8	O
2	E-Cigarette Toxicology. Annual Review of Pharmacology and Toxicology, 2022, 62, 301-322.	9.4	54
3	Woodsmoke particle exposure prior to SARS-CoV-2 infection alters antiviral response gene expression in human nasal epithelial cells in a sex-dependent manner. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, 322, L479-L494.	2.9	10
4	The Nose Knows: Sniffing out the Unique Immunological Risk of Alternative Tobacco Products. American Journal of Respiratory Cell and Molecular Biology, 2022, 66, 461-464.	2.9	1
5	Cytokine signature clusters as a tool to compare changes associated with tobacco product use in upper and lower airway samples. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, 322, L722-L736.	2.9	4
6	Cannabinoid Vaping Products Present Novel Challenges for Assessment of Respiratory Health Effects. Toxicological Sciences, 2022, 188, 1-3.	3.1	3
7	Biomarkers of Airway Immune Homeostasis Differ Significantly with Generation of E-Cigarettes. American Journal of Respiratory and Critical Care Medicine, 2022, 206, 1248-1258.	5.6	9
8	Wildfires and extracellular vesicles: Exosomal MicroRNAs as mediators of cross-tissue cardiopulmonary responses to biomass smoke. Environment International, 2022, 167, 107419.	10.0	14
9	E-cigarette use and respiratory disorders: an integrative review of converging evidence from epidemiological and laboratory studies. European Respiratory Journal, 2021, 57, 1901815.	6.7	106
10	Compliance in Controlled E-cigarette Studies. Nicotine and Tobacco Research, 2021, 23, 614-618.		-
		2.6	2
11	Electronic-Cigarette Use Alters Nasal Mucosal Immune Response to Live-attenuated Influenza Virus. A Clinical Trial. American Journal of Respiratory Cell and Molecular Biology, 2021, 64, 126-137.	2.6	41
11	Electronic-Cigarette Use Alters Nasal Mucosal Immune Response to Live-attenuated Influenza Virus. A		
	Electronic-Cigarette Use Alters Nasal Mucosal Immune Response to Live-attenuated Influenza Virus. A Clinical Trial. American Journal of Respiratory Cell and Molecular Biology, 2021, 64, 126-137. Electronic Cigarettes and Their Impact on Allergic Respiratory Diseases: A Work Group Report of the AAAAI Environmental Exposures and Respiratory Health Committee. Journal of Allergy and Clinical	2.9	41
12	Electronic-Cigarette Use Alters Nasal Mucosal Immune Response to Live-attenuated Influenza Virus. A Clinical Trial. American Journal of Respiratory Cell and Molecular Biology, 2021, 64, 126-137. Electronic Cigarettes and Their Impact on Allergic Respiratory Diseases: A Work Group Report of the AAAAI Environmental Exposures and Respiratory Health Committee. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 1142-1151. Pilot Study to Detect Genes Involved in DNA Damage and Cancer in Humans: Potential Biomarkers of	2.9	6
12	Electronic-Cigarette Use Alters Nasal Mucosal Immune Response to Live-attenuated Influenza Virus. A Clinical Trial. American Journal of Respiratory Cell and Molecular Biology, 2021, 64, 126-137. Electronic Cigarettes and Their Impact on Allergic Respiratory Diseases: A Work Group Report of the AAAAI Environmental Exposures and Respiratory Health Committee. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 1142-1151. Pilot Study to Detect Genes Involved in DNA Damage and Cancer in Humans: Potential Biomarkers of Exposure to E-Cigarette Aerosols. Genes, 2021, 12, 448.	2.9 3.8 2.4	41 6 8
12 13 14	Electronic-Cigarette Use Alters Nasal Mucosal Immune Response to Live-attenuated Influenza Virus. A Clinical Trial. American Journal of Respiratory Cell and Molecular Biology, 2021, 64, 126-137. Electronic Cigarettes and Their Impact on Allergic Respiratory Diseases: A Work Group Report of the AAAAI Environmental Exposures and Respiratory Health Committee. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 1142-1151. Pilot Study to Detect Genes Involved in DNA Damage and Cancer in Humans: Potential Biomarkers of Exposure to E-Cigarette Aerosols. Genes, 2021, 12, 448. E-Cigarette Flavoring Chemicals Induce Cytotoxicity in HepG2 Cells. ACS Omega, 2021, 6, 6708-6713. Mixtures modeling identifies chemical inducers versus repressors of toxicity associated with	2.9 3.8 2.4 3.5	41 6 8 17
12 13 14	Electronic-Cigarette Use Alters Nasal Mucosal Immune Response to Live-attenuated Influenza Virus. A Clinical Trial. American Journal of Respiratory Cell and Molecular Biology, 2021, 64, 126-137. Electronic Cigarettes and Their Impact on Allergic Respiratory Diseases: A Work Group Report of the AAAAI Environmental Exposures and Respiratory Health Committee. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 1142-1151. Pilot Study to Detect Genes Involved in DNA Damage and Cancer in Humans: Potential Biomarkers of Exposure to E-Cigarette Aerosols. Genes, 2021, 12, 448. E-Cigarette Flavoring Chemicals Induce Cytotoxicity in HepG2 Cells. ACS Omega, 2021, 6, 6708-6713. Mixtures modeling identifies chemical inducers versus repressors of toxicity associated with wildfire smoke. Science of the Total Environment, 2021, 775, 145759. Oxysterols Modify NLRP2 in Epithelial Cells, Identifying a Mediator of Ozone-induced Inflammation.	2.9 3.8 2.4 3.5	41 6 8 17 37

#	Article	IF	CITATIONS
19	Evolving chemical landscape of e-cigarettes, 2021. Tobacco Control, 2021, , tobaccocontrol-2021-056808.	3.2	1
20	Wildfire exposure {in utero} and use of respiratory medications in early childhood. ISEE Conference Abstracts, 2021, 2021, .	0.0	0
21	Policy Recommendations to Eliminate Tobacco Use and Improve Health from the American Thoracic Society Tobacco Action Committee. Annals of the American Thoracic Society, 2021, , .	3.2	2
22	Identification of an ATP/P2X7/mast cell pathway mediating ozone-induced bronchial hyperresponsiveness. JCI Insight, 2021, 6, .	5.0	4
23	Associations of short-term PM2.5 exposures with nasal oxidative stress, inflammation and lung function impairment and modification by GSTT1-null genotype: A panel study of the retired adults. Environmental Pollution, 2021, 285, 117215.	7.5	19
24	Carcinogenic biomarkers of exposure in the urine of heated tobacco product users associated with bladder cancer: A systematic review. Urologic Oncology: Seminars and Original Investigations, 2021, , .	1.6	4
25	Chemistry, lung toxicity and mutagenicity of burn pit smoke-related particulate matter. Particle and Fibre Toxicology, 2021, 18, 45.	6.2	13
26	Danger in the vapor? ECMO for adolescents with status asthmaticus after vaping. Journal of Asthma, 2020, 57, 1168-1172.	1.7	44
27	E-cigarettes, vaping-related pulmonary illnesses, and asthma: AÂperspective from inhalation toxicologists. Journal of Allergy and Clinical Immunology, 2020, 145, 97-99.	2.9	13
28	Ozone-derived oxysterols impair lung macrophage phagocytosis via adduction of some phagocytosis receptors. Journal of Biological Chemistry, 2020, 295, 12727-12738.	3.4	11
29	Current E-Cigarette Research in the Context of Asthma. Current Allergy and Asthma Reports, 2020, 20, 62.	5.3	21
30	SARS-CoV-2 Reverse Genetics Reveals a Variable Infection Gradient in the Respiratory Tract. Cell, 2020, 182, 429-446.e14.	28.9	1,257
31	Impact of E-Cigarette Liquid Flavoring Agents on Activity of Microsomal Recombinant CYP2A6, the Primary Nicotine-Metabolizing Enzyme. Chemical Research in Toxicology, 2020, 33, 1689-1697.	3.3	6
32	New Approach Methods to Evaluate Health Risks of Air Pollutants: Critical Design Considerations for In Vitro Exposure Testing. International Journal of Environmental Research and Public Health, 2020, 17, 2124.	2.6	51
33	<i>In Vitro</i> Toxicity and Chemical Characterization of Aerosol Derived from Electronic Cigarette Humectants Using a Newly Developed Exposure System. Chemical Research in Toxicology, 2020, 33, 1677-1688.	3.3	39
34	Small Molecule Antipsychotic Aripiprazole Potentiates Ozone-Induced Inflammation in Airway Epithelium. Chemical Research in Toxicology, 2019, 32, 1997-2005.	3.3	3
35	Common E-Cigarette Flavoring Chemicals Impair Neutrophil Phagocytosis and Oxidative Burst. Chemical Research in Toxicology, 2019, 32, 982-985.	3.3	50
36	Cinnamaldehyde in flavored e-cigarette liquids temporarily suppresses bronchial epithelial cell ciliary motility by dysregulation of mitochondrial function. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 316, L470-L486.	2.9	128

#	Article	IF	Citations
37	Wood Smoke Exposure Alters Human Inflammatory Responses to Viral Infection in a Sex-Specific Manner. A Randomized, Placebo-controlled Study. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 996-1007.	5.6	46
38	Radiolabeling an Electronic Cigarette Aerosol Using Technetium Carbon Ultrafine Particles. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2019, 32, 47-53.	1.4	4
39	Distinguishing Human Peripheral Blood NK Cells from CD56dimCD16dimCD69+CD103+ Resident Nasal Mucosal Lavage Fluid Cells. Scientific Reports, 2018, 8, 3394.	3.3	16
40	Interleukin-13 stimulates production of nitric oxide in cultured human nasal epithelium. In Vitro Cellular and Developmental Biology - Animal, 2018, 54, 200-204.	1.5	3
41	E-Cigarette Use Causes a Unique Innate Immune Response in the Lung, Involving Increased Neutrophilic Activation and Altered Mucin Secretion. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 492-501.	5.6	263
42	Novel applications for a noninvasive sampling method of the nasal mucosa. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 312, L288-L296.	2.9	42
43	Flavored e-cigarette liquids and cinnamaldehyde impair respiratory innate immune cell function. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 313, L278-L292.	2.9	172
44	Temporal structure/function variation in cultured differentiated human nasal epithelium associated with acute single exposure to tobacco smoke or E-cigarette vapor. Inhalation Toxicology, 2017, 29, 137-144.	1.6	34
45	Gene Expression Profiling in Human Lung Cells Exposed to Isoprene-Derived Secondary Organic Aerosol. Environmental Science & Eamp; Technology, 2017, 51, 8166-8175.	10.0	53
46	Electronic Cigarettes: Their Constituents and Potential Links to Asthma. Current Allergy and Asthma Reports, 2017, 17, 79.	5.3	139
47	Response to comments by Emma et al American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 311, L526-L526.	2.9	0
48	Effect of Broccoli Sprouts and Live Attenuated Influenza Virus on Peripheral Blood Natural Killer Cells: A Randomized, Double-Blind Study. PLoS ONE, 2016, 11, e0147742.	2.5	46
49	Ozone-derived Oxysterols Affect Liver X Receptor (LXR) Signaling. Journal of Biological Chemistry, 2016, 291, 25192-25206.	3.4	23
50	E-cigarette use results in suppression of immune and inflammatory-response genes in nasal epithelial cells similar to cigarette smoke. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 311, L135-L144.	2.9	187
51	Isoprene-Derived Secondary Organic Aerosol Induces the Expression of Oxidative Stress Response Genes in Human Lung Cells. Environmental Science and Technology Letters, 2016, 3, 250-254.	8.7	60
52	Assessment of biological responses of EpiAirway 3-D cell constructs versus A549 cells for determining toxicity of ambient air pollution. Inhalation Toxicology, 2016, 28, 251-259.	1.6	43
53	Diesel exposure suppresses natural killer cell function and resolution of eosinophil inflammation: a randomized controlled trial of exposure in allergic rhinitics. Particle and Fibre Toxicology, 2015, 13, 24.	6.2	15
54	Association between early airway damage-associated molecular patterns and subsequent bacterial infection in patients with inhalational and burn injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L855-L860.	2.9	31

#	Article	IF	CITATIONS
55	A comparison of three dispersion media on the physicochemical and toxicological behavior of TiO2 and NiO nanoparticles. Chemico-Biological Interactions, 2015, 236, 74-81.	4.0	9
56	Respiratory protease/antiprotease balance determines susceptibility to viral infection and can be modified by nutritional antioxidants. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L1189-L1201.	2.9	55
57	Phenotypic Modification of Human Airway Epithelial Cells in Air–Liquid Interface Culture Induced by Exposure to the Tobacco-Specific Nitrosamine 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Ultrastructural Pathology, 2015, 39, 104-109.	0.9	4
58	Interaction with Epithelial Cells Modifies Airway Macrophage Response to Ozone. American Journal of Respiratory Cell and Molecular Biology, 2015, 52, 285-294.	2.9	33
59	An Allergic Lung Microenvironment Suppresses Carbon Nanotube-Induced Inflammasome Activation via STAT6-Dependent Inhibition of Caspase-1. PLoS ONE, 2015, 10, e0128888.	2.5	32
60	Effect of Broccoli Sprouts on Nasal Response to Live Attenuated Influenza Virus in Smokers: A Randomized, Double-Blind Study. PLoS ONE, 2014, 9, e98671.	2.5	36
61	Regulation and activity of secretory leukoprotease inhibitor (SLPI) is altered in smokers. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 306, L269-L276.	2.9	11
62	Live attenuated influenza vaccine strains elicit a greater innate immune response than antigenically-matched seasonal influenza viruses during infection of human nasal epithelial cell cultures. Vaccine, 2014, 32, 1761-1767.	3.8	28
63	Cigarette Smoke Effects on Innate Immune Mechanisms in the Nasal Mucosa. Potential Effects on the Microbiome. Annals of the American Thoracic Society, 2014, 11, S38-S42.	3.2	46
64	Air toxics and epigenetic effects: ozone altered microRNAs in the sputum of human subjects. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 306, L1129-L1137.	2.9	75
65	The Gillings Sampler – An electrostatic air sampler as an alternative method for aerosol in vitro exposure studies. Chemico-Biological Interactions, 2014, 220, 158-168.	4.0	23
66	Diesel exhaust particles modify natural killer cell function and cytokine release. Particle and Fibre Toxicology, 2013, 10, 16.	6.2	30
67	Sulforaphane induces SLPI secretion in the nasal mucosa. Respiratory Medicine, 2013, 107, 472-475.	2.9	21
68	Ozone exposed epithelial cells modify cocultured natural killer cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 304, L332-L341.	2.9	22
69	DNA methylation in nasal epithelial cells from smokers: identification of ULBP3-related effects. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 305, L432-L438.	2.9	26
70	Culturing of Human Nasal Epithelial Cells at the Air Liquid Interface. Journal of Visualized Experiments, $2013, \ldots$	0.3	100
71	Lower natural killer cell cytotoxicity in smokers may be mediated by epithelial cells. FASEB Journal, 2013, 27, 645.1.	0.5	0
72	Diesel Exhaust Exposure and Nasal Response to Attenuated Influenza in Normal and Allergic Volunteers. American Journal of Respiratory and Critical Care Medicine, 2012, 185, 179-185.	5.6	45

#	Article	IF	Citations
73	Alteration of the nasal responses to influenza virus by tobacco smoke. Current Opinion in Allergy and Clinical Immunology, 2012, 12, 24-31.	2.3	21
74	In Vitro Exposures in Diesel Exhaust Atmospheres: Resuspension of PM from Filters versus Direct Deposition of PM from Air. Environmental Science & Examp; Technology, 2012, 46, 9062-9070.	10.0	57
75	Influenza enhances caspase-1 in bronchial epithelial cells from asthmatic volunteers and is associated with pathogenesis. Journal of Allergy and Clinical Immunology, 2012, 130, 958-967.e14.	2.9	46
76	Exposure to Ozone Modulates Human Airway Protease/Antiprotease Balance Contributing to Increased Influenza A Infection. PLoS ONE, 2012, 7, e35108.	2.5	84
77	Live Attenuated Influenza Virus (LAIV) induces different mucosal T cell function in nonsmokers and smokers. Clinical Immunology, 2012, 142, 232-236.	3.2	27
78	Epithelial cells, the "switchboard" of respiratory immune defense responses: effects of air pollutants. Swiss Medical Weekly, 2012, 142, w13653.	1.6	23
79	Nrf2 expression modifies influenza A entry and replication in nasal epithelial cells. Free Radical Biology and Medicine, 2011, 51, 444-453.	2.9	142
80	GSTM1 modulation of IL-8 expression in human bronchial epithelial cells exposed to ozone. Free Radical Biology and Medicine, 2011, 51, 522-529.	2.9	34
81	Nasal lavage natural killer cell function is suppressed in smokers after live attenuated influenza virus. Respiratory Research, 2011, 12, 102.	3.6	39
82	Epithelial Cells from Smokers Modify Dendritic Cell Responses in the Context of Influenza Infection. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 237-245.	2.9	39
83	Tobacco Smoke Exposure and Altered Nasal Responses to Live Attenuated Influenza Virus. Environmental Health Perspectives, 2011, 119, 78-83.	6.0	54
84	Phenotypic and physiologic variability in nasal epithelium cultured from smokers and non-smokers exposed to secondhand tobacco smoke. In Vitro Cellular and Developmental Biology - Animal, 2010, 46, 606-612.	1.5	15
85	Role of oxidative stress on diesel-enhanced influenza infection in mice. Particle and Fibre Toxicology, 2010, 7, 34.	6.2	34
86	Reduced Expression of IRF7 in Nasal Epithelial Cells from Smokers after Infection with Influenza. American Journal of Respiratory Cell and Molecular Biology, 2010, 43, 368-375.	2.9	61
87	Disruption of MicroRNA Expression in Human Airway Cells by Diesel Exhaust Particles Is Linked to Tumorigenesis-Associated Pathways. Environmental Health Perspectives, 2009, 117, 1745-1751.	6.0	156
88	Increased nasal epithelial ciliary beat frequency associated with lifestyle tobacco smoke exposure. Inhalation Toxicology, 2009, 21, 875-881.	1.6	56
89	Nanodiamond particles induce I1-8 expression through a transcript stabilization mechanism in human airway epithelial cells. Nanotoxicology, 2009, 3, 152-160.	3.0	13
90	Exacerbation of allergic inflammation in mice exposed to diesel exhaust particles prior to viral infection. Particle and Fibre Toxicology, 2009, 6, 22.	6.2	24

#	Article	IF	Citations
91	Localization of Type I Interferon Receptor Limits Interferon-Induced TLR3 in Epithelial Cells. Journal of Interferon and Cytokine Research, 2009, 29, 289-297.	1.2	21
92	Modulation of pulmonary inflammatory responses and antimicrobial defenses in mice exposed to diesel exhaust. Toxicology and Applied Pharmacology, 2008, 229, 310-319.	2.8	54
93	Air Pollution and Respiratory Viral Infection. Inhalation Toxicology, 2007, 19, 1135-1146.	1.6	353
94	Diesel Exhaust Enhanced Susceptibility to Influenza Infection is Associated with Decreased Surfactant Protein Expression. Inhalation Toxicology, 2007, 19, 1121-1133.	1.6	35
95	Zn2+-induced NF-κB-dependent transcriptional activity involves site-specific p65/RelA phosphorylation. Cellular Signalling, 2007, 19, 538-546.	3.6	27
96	Diesel exhaust enhances virus- and poly(I:C)-induced Toll-like receptor 3 expression and signaling in respiratory epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 290, L1154-L1163.	2.9	42
97	Ultrafine carbon particles induce interleukin-8 gene transcription and p38 MAPK activation in normal human bronchial epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 288, L432-L441.	2.9	60
98	Diesel Exhaust Enhances Influenza Virus Infections in Respiratory Epithelial Cells. Toxicological Sciences, 2005, 85, 990-1002.	3.1	148
99	Effects of 1,3-Butadiene, Isoprene, and Their Photochemical Degradation Products on Human Lung Cells. Environmental Health Perspectives, 2004, 112, 1488-1495.	6.0	80
100	Photochemical Products in Urban Mixtures Enhance Inflammatory Responses in Lung Cells. Inhalation Toxicology, 2004, 16, 107-114.	1.6	68
101	Superoxide-Dependent Iron Uptake. American Journal of Respiratory Cell and Molecular Biology, 2003, 29, 653-660.	2.9	26
102	Transcription factor activation following exposure of an intact lung preparation to metallic particulate matter Environmental Health Perspectives, 2002, 110, 985-990.	6.0	36
103	Role of Ras in metal-induced EGF receptor signaling and NF-κB activation in human airway epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2002, 282, L1040-L1048.	2.9	55
104	Hydrogen Peroxide Has Opposing Effects on IKK Activity and I \hat{l}° B \hat{l}_{\pm} Breakdown in Airway Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2001, 24, 769-777.	2.9	92
105	Vanadium-Induced κ B-Dependent Transcription Depends upon Peroxide-Induced Activation of the p38 Mitogen-Activated Protein Kinase. American Journal of Respiratory Cell and Molecular Biology, 2000, 23, 95-102.	2.9	57
106	Arsenite Exposure of Cultured Airway Epithelial Cells Activates κB-dependent Interleukin-8 Gene Expression in the Absence of Nuclear Factor-κB Nuclear Translocation. Journal of Biological Chemistry, 1999, 274, 31025-31033.	3.4	56
107	Development of the InTelligence And Machine LEarning (TAME) Toolkit for Introductory Data Science, Chemical-Biological Analyses, Predictive Modeling, and Database Mining for Environmental Health Research. Frontiers in Toxicology, 0, 4, .	3.1	4