
Gregory A Denomme

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1785812/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	lt's time to phase in <i><scp>RHD</scp></i> genotyping for patients with a serologic weak <scp>D</scp> phenotype. Transfusion, 2015, 55, 680-689.	0.8	157
2	High-throughput multiplex single-nucleotide polymorphism analysis for red cell and platelet antigen genotypes. Transfusion, 2005, 45, 660-666.	0.8	131
3	A diagnostic test for heparinâ€induced thrombocytopenia: detection of platelet microparticles using flow cytometry. British Journal of Haematology, 1996, 95, 724-731.	1.2	125
4	Partial D, weak D types, and novel RHD alleles among 33,864 multiethnic patients: implications for anti-D alloimmunization and prevention. Transfusion, 2005, 45, 1554-1560.	0.8	105
5	Activation of platelets by sera containing igg1 heparin-dependent antibodies: an explanation for the predominance of the Fcl³rlla "low responder―(his131) gene in patients with heparin-induced thrombocytopenia. Translational Research, 1997, 130, 278-284.	2.4	88
6	International Society of Blood Transfusion Working Party on Red Cell Immunogenetics and Blood Group Terminology: Report of the Dubai, Copenhagen and Toronto meetings. Vox Sanguinis, 2019, 114, 95-102.	0.7	75
7	Applying molecular immunohematology discoveries to standards of practice in blood banks: now is the time. Transfusion, 2008, 48, 2461-2475.	0.8	73
8	FcÎ ³ receptor IIa and IIIa polymorphisms in childhood immune thrombocytopenic purpura. British Journal of Haematology, 2003, 120, 135-141.	1.2	71
9	Implementing massâ€scale red cell genotyping at a blood center. Transfusion, 2015, 55, 2610-2615.	0.8	70
10	Integration of red cell genotyping into the blood supply chain: a population-based study. Lancet Haematology,the, 2015, 2, e282-e288.	2.2	66
11	The cDNA Sequence of Human Endothelial Cell Multimerin. Journal of Biological Chemistry, 1995, 270, 18246-18251.	1.6	62
12	International society of blood transfusion working party on red cell immunogenetics and terminology: report of the Seoul and London meetings. ISBT Science Series, 2016, 11, 118-122.	1.1	56
13	Red blood cell specifications for patients with hemoglobinopathies: a systematic review and guideline. Transfusion, 2018, 58, 1555-1566.	0.8	55
14	Novel 3' Rhesus box sequences confound RHD zygosity assignment. Transfusion, 2002, 42, 645-650.	0.8	53
15	DNA-based methods in the immunohematology reference laboratory. Transfusion and Apheresis Science, 2011, 44, 65-72.	0.5	47
16	Maternal immunization to Gov system alloantigens on human platelets. Transfusion, 1997, 37, 823-828.	0.8	45
17	Factor V Leiden and Thrombotic Complications in Heparin-induced Thrombocytopenia. Thrombosis and Haemostasis, 1998, 79, 50-53.	1.8	37
18	Maternal ABO-mismatched blood for intrauterine transfusion of severe hemolytic disease of the newborn due to anti-Rh17. Transfusion, 2004, 44, 1357-1360.	0.8	37

#	Article	IF	CITATIONS
19	Rh discrepancies caused by variable reactivity of partial and weak D types with different serologic techniques. Transfusion, 2008, 48, 473-478.	0.8	37
20	On the Complexity of D Antigen Typing: A Handy Decision Tree in the Age of Molecular Blood Group Diagnostics. Journal of Obstetrics and Gynaecology Canada, 2007, 29, 746-752.	0.3	36
21	Molecular basis of blood group expression. Transfusion and Apheresis Science, 2011, 44, 53-63.	0.5	36
22	Prospects for the provision of genotyped blood for transfusion. British Journal of Haematology, 2013, 163, 3-9.	1.2	36
23	The structure and function of the molecules that carry human red blood cell and platelet antigensâ~†. Transfusion Medicine Reviews, 2004, 18, 203-231.	0.9	34
24	Chemical compounds that target thiol-disulfide groups on mononuclear phagocytes inhibit immune mediated phagocytosis of red blood cells. Transfusion, 2005, 45, 384-393.	0.8	34
25	Mass-scale red cell genotyping of blood donors. Transfusion and Apheresis Science, 2011, 44, 93-99.	0.5	31
26	Kell and Kx blood group systems. Immunohematology, 2015, 31, 14-19.	0.2	29
27	Antenatal administration of Rh-immune globulin causes significant increases in the immunomodulatory cytokines transforming growth factor-1² and prostaglandin E2. Transfusion, 2006, 46, 1316-1322.	0.8	28
28	Practical approaches and costs for provisioning safe transfusions during anti D38 therapy. Transfusion, 2017, 57, 1470-1479.	0.8	27
29	It's time to phase out "serologic weak D phenotype―and resolve D types with <i>RHD</i> genotyping including weak D type 4. Transfusion, 2020, 60, 855-859.	0.8	27
30	Barriers to using molecularly typed minority red blood cell donors in support of chronically transfused adult patients with sickle cell disease. Transfusion, 2015, 55, 1399-1406.	0.8	24
31	Genotyping for red blood cell polymorphisms. Vox Sanguinis, 2009, 96, 167-179.	0.7	22
32	Comparison of the measurement of surface or total platelet-associated IgG in the diagnosis of immune thrombocytopenia. American Journal of Hematology, 1985, 18, 1-5.	2.0	21
33	Immunoglobulin V Sequences of Two Human Antiplatelet Monoclonal Autoantibodies Derived from B Cells of Normal Origin. Journal of Autoimmunity, 1994, 7, 521-535.	3.0	20
34	Mechanisms of anti-D action in the prevention of hemolytic disease of the fetus and newborn: what can we learn from rodent models?. Current Opinion in Hematology, 2009, 16, 488-496.	1.2	20
35	Inhibition of erythroid progenitor cell growth by anti-Ge3. British Journal of Haematology, 2006, 133, 443-444.	1.2	19
36	How do I work up pretransfusion samples containing anti D38?. Transfusion, 2017, 57, 1337-1342.	0.8	18

#	Article	IF	CITATIONS
37	The prenatal identification of fetal compatibility in neonatal alloimmune thrombocytopenia using amniotic fluid and variable number of tandem repeat (VNTR) analysis. British Journal of Haematology, 1995, 91, 742-746.	1.2	17
38	The <i>DAU</i> cluster: a comparative analysis of 18 <i>RHD</i> alleles, some forming partial D antigens. Transfusion, 2016, 56, 2520-2531.	0.8	17
39	Massâ€scale highâ€throughput multiplex polymerase chain reaction for human platelet antigen singleâ€nucleotide polymorphisms screening of apheresis platelet donors. Transfusion, 2011, 51, 2028-2033.	0.8	16
40	Red cell genotyping precision medicine: a conference summary. Therapeutic Advances in Hematology, 2017, 8, 277-291.	1.1	16
41	The Measurement of Plateiet-Associated IgG Using an Immunoradiometric Assay. Journal of Immunoassay, 1983, 4, 65-82.	0.3	14
42	Fetal blood group genotyping. Transfusion, 2007, 47, 64S-68S.	0.8	14
43	Hemolytic Disease of the Fetus and Newborn Due to Anti-Ge3: Combined Antibody-Dependent Hemolysis and Erythroid Precursor Cell Growth Inhibition. American Journal of Perinatology, 2008, 25, 541-545.	0.6	14
44	Three non-classical mechanisms for anemic disease of the fetus and newborn, based on maternal anti-Kell, anti-Ge3, anti-M, and anti-Jra cases. Transfusion and Apheresis Science, 2020, 59, 102949.	0.5	13
45	A multicenter study on the performance of a fully automated, walkâ€away highâ€throughput analyzer for pretransfusion testing in the US population. Transfusion, 2015, 55, 1522-1528.	0.8	12
46	Mass-scale donor red cell genotyping using real-time array technology. Immunohematology, 2015, 31, 69-74.	0.2	12
47	The role of the immunoglobulin heavy chain in human anti-dna antibody binding specificity. Arthritis and Rheumatism, 1995, 38, 389-395.	6.7	11
48	The future of red blood cell alloimmunization risk reduction. Transfusion, 2015, 55, 220-221.	0.8	10
49	Trends in antigenâ€negative red blood cell distributions by racial or ethnic groups in the United States. Transfusion, 2018, 58, 145-150.	0.8	10
50	Molecular immunohaematology round table discussions at the AABB Annual Meeting, Boston 2012. Blood Transfusion, 2014, 12, 280-6.	0.3	10
51	Consortium for Blood Group Genes (CBGG): 2009 report. Immunohematology, 2010, 26, 47-50.	0.2	10
52	ABO sequence analysis in a family with weak expression of blood group B. Transfusion, 2004, 44, 1394-1395.	0.8	9
53	Amino-acid substitution in the disordered loop of blood group B-glycosyltransferase enzyme causes weak B phenotype. Transfusion, 2005, 45, 1178-1182.	0.8	9
54	Allo―and autoantiâ€D in weak D types and in partial D. Transfusion, 2012, 52, 2067-2069.	0.8	9

#	Article	IF	CITATIONS
55	Fetal inheritance of GP*Mur causing severe HDFN in an unrecognized case of maternal alloimmunization. Transfusion, 2020, 60, 870-874.	0.8	9
56	Generation of â€~designer erythroblasts' lacking one or more blood group systems from CRISPR/Cas9 geneâ€edited humanâ€induced pluripotent stem cells. Journal of Cellular and Molecular Medicine, 2021, 25, 9340-9349.	1.6	9
57	The production of human monoclonal antiplatelet auto-antibodies derived from human lymphocytes of normal origin: reactivity to DNA, anionic phospholipids and platelet proteins. British Journal of Haematology, 1992, 82, 99-106.	1.2	8
58	Genetic background of the rare Yus and Gerbich blood group phenotypes: homologous regions of the <i><scp>GYPC</scp></i> gene contribute to deletion alleles. British Journal of Haematology, 2017, 177, 630-640.	1.2	8
59	Two Prevalent â^¼100-kb <i>CYPB</i> Deletions Causative of the GPB-Deficient Blood Group MNS Phenotype S–s–U– in Black Africans. Transfusion Medicine and Hemotherapy, 2020, 47, 326-336.	0.7	8
60	Small world – Advance of microarrays: Current status and future trends. Transfusion and Apheresis Science, 2007, 36, 201-206.	0.5	7
61	Antiâ€glycophorin C induces mitochondrial membrane depolarization and a loss of extracellular regulated kinase 1/2 protein kinase activity that is prevented by pretreatment with cytochalasin D: implications for hemolytic disease of the fetus and newborn caused by antiâ€Ge3. Transfusion, 2010, 50, 1761-1765.	0.8	7
62	The first reported case of concurrent trimethoprimâ€sulfamethoxazole–induced immune hemolytic anemia and thrombocytopenia. Transfusion, 2017, 57, 2937-2941.	0.8	7
63	Potential impact of complement regulator deficiencies on hemolytic reactions due to minor ABO-mismatched transfusions. Blood Advances, 2017, 1, 1977-1982.	2.5	7
64	Validated Reference Panel from Renewable Source of Genomic DNA Available for Standardization of Blood Group Genotyping. Journal of Molecular Diagnostics, 2019, 21, 525-537.	1.2	7
65	Recommendation for validation and quality assurance of nonâ€invasive prenatal testing for foetal blood groups and implications for <scp>IVD</scp> risk classification according to <scp>EU</scp> regulations. Vox Sanguinis, 2022, 117, 157-165.	0.7	7
66	Molecular immunohaematology round table discussions at the AABB Annual Meeting, Denver 2013. Blood Transfusion, 2015, 13, 514-20.	0.3	6
67	Molecular immunohaematology round table discussions at the AABB Annual Meeting, Anaheim 2015. Blood Transfusion, 2016, 14, 557-565.	0.3	6
68	RhD status of a fetus at risk for haemolytic disease with a discrepant maternal DNA-based RhD genotype. , 1999, 19, 424-427.		5
69	Protocols. , 2000, , 19-65.		5
70	In Silico Analysis in Transfusion Medicine. Vox Sanguinis, 2002, 83, 111-113.	0.7	5
71	Detection of antibodies reacting with the antithetical duffy blood group antigens Fya and Fyb using recombinant fusion proteins containing the duffy extracellular domain. Transfusion and Apheresis Science, 2006, 35, 207-216.	0.5	5
72	Antibodyâ€mediated glycophorin <scp>C</scp> coligation on <scp>K</scp> 562 cells induces phosphatidylserine exposure and cell death in an atypical apoptotic process. Transfusion, 2013, 53, 2134-2140.	0.8	5

#	Article	IF	CITATIONS
73	Massâ€scale red cell genotyping of blood donors: from data visualization to historical antigen labeling and donor recruitment. Transfusion, 2019, 59, 2768-2770.	0.8	5
74	The Mechanism of Rh-Immune Globulin Prophylaxis Involves Significant Increases in the Immunosuppressive Cytokines TGFÎ ² and PGE2 Blood, 2005, 106, 558-558.	0.6	5
75	Titers of ABO antibodies in group O blood donors. Revista Brasileira De Hematologia E Hemoterapia, 2011, 33, 250-251.	0.7	4
76	RhD Specific Antibodies Are Not Detectable in HLA-DRB11501*Mice Challenged with Human RhD Positive Erythrocytes. Advances in Hematology, 2014, 2014, 1-7.	0.6	4
77	Performance and reliability of a benchtop automated instrument for transfusion testing: a comparative multicenter clinical study in the US population. Transfusion, 2019, 59, 3511-3518.	0.8	4
78	Complement activating ABO anti-A IgM/IgG act synergistically to cause erythrophagocytosis: implications among minor ABO incompatible transfusions. Journal of Translational Medicine, 2020, 18, 216.	1.8	4
79	ABO titers: harmonization and identifying clinically relevant ABO antibodies. Transfusion, 2020, 60, 441-443.	0.8	4
80	<scp>SCAR</scp> : The highâ€prevalence antigen 013.008 in the <scp>Scianna</scp> blood group system. Transfusion, 2021, 61, 246-254.	0.8	4
81	Use of a cloudâ€based search engine of a centralized donor database to identify historical antigenâ€negative units in hospital inventories. Transfusion, 2020, 60, 417-423.	0.8	4
82	A human monoclonal autoantibody to platelet glycoprotein IIb derived from normal human lymphocytes. Blood, 1992, 79, 447-51.	0.6	4
83	Consortium for Blood Group Genes (CBGG): 2008 report. Immunohematology, 2009, 25, 75-80.	0.2	4
84	The production of platelet controls for assays quantitating platelet- associated IgG. Transfusion, 1983, 23, 516-518.	0.8	3
85	Synonymous nucleotide substitutions in the neonatal Fc receptor. Immunogenetics, 2002, 54, 139-140.	1.2	3
86	The proximal cisâ€regulatory region of the <i>RHD</i> / <i>RHCE</i> promoter is 105â€fbp and contains a 55â€bp core devoid of known binding motifs but necessary for transcription. Transfusion, 2009, 49, 1361-1369.	0.8	3
87	Unusual serological findings associated with ceftriaxoneâ€induced immune hemolytic anemia in a child with disseminated lowâ€grade glioma. Pediatric Blood and Cancer, 2016, 63, 1852-1855.	0.8	3
88	Costâ€effectiveness of implementing molecular immunohematology. ISBT Science Series, 2017, 12, 223-226.	1.1	3
89	Molecular characterization and multidisciplinary management of Gerbich hemolytic disease of the newborn. Pediatric Blood and Cancer, 2018, 65, e27014.	0.8	3
90	New <i>RHCE*ce</i> variant allele in African descent holds 105C>T (silent) in cis to 48C in Exon 1 and 733G in Exon 5. Transfusion, 2019, 59, 3039-3040.	0.8	3

#	Article	IF	CITATIONS
91	IgG3 antiâ€Kell allotypic variation results in differential antigen binding and phagocytosis. Transfusion, 2020, 60, 688-693.	0.8	3
92	Effect of cryopreservation on a rare McLeod donor red blood cell concentrate. Immunohematology, 2021, 37, 78-83.	0.2	3
93	Platelet and Leukocyte Fcl ³ Receptors in Heparin-Induced Thrombocytopenia. Fundamental and Clinical Cardiology, 2007, , 187-208.	0.0	3
94	An Adenine Trimer Precedes a C/G Polymorphism in the 3′-Amplimer Region of the Human Platelet Glycoprotein IIIa Intron 6 CT Repeat. Human Heredity, 1998, 48, 115-118.	0.4	2
95	Predictive blood group genetics in hemolytic disease of the fetus and newborn: a 10â€year review of a laboratory evaluation of amniotic fluidâ€derived DNA. Prenatal Diagnosis, 2007, 27, 1017-1023.	1.1	2
96	IFN-Î ³ treated monocyte/macrophage phagocytosis of red cells sensitized with IgG1 and IgG3 Anti-D containing identical immunoglobulin variable region genes. Transfusion and Apheresis Science, 2008, 39, 37-44.	0.5	2
97	Single Base Extension in Multiplex Blood Group Genotyping. Methods in Molecular Biology, 2009, 496, 15-24.	0.4	2
98	<i>RHCE*cE94G</i> encodes variable expression of c (RH4). Transfusion, 2015, 55, 2519-2520.	0.8	2
99	Molecular characterization of three novel weak D type alleles with additional haplotype data on weak D Types 1.2 and 18. Transfusion, 2017, 57, 1092-1093.	0.8	2
100	Predictive modeling of complex ABO glycan phenotypes by lectin microarrays. Blood Advances, 2020, 4, 3960-3970.	2.5	2
101	How to use a cloudâ€based search engine of a centralized donor database to identify historical antigenâ€negative units in hospital inventories. Transfusion, 2020, 60, 414-416.	0.8	2
102	Immunoglobulin V region heavy and light chain gene sequences of the lymphoblastoid cell line GM 4672. Human Antibodies, 1993, 4, 98-103.	0.6	1
103	Red Cell Blood Groups. , 2000, , 67-139.		1
104	<scp>Antiâ€D</scp> selection for <scp>D</scp> assignment among pregnant women and blood donors: impact of the <scp>Crawford</scp> antigen. Transfusion, 2020, 60, 1378-1380.	0.8	1
105	Red cell genotyping of rare blood donors: donation behaviour and data visualization. Vox Sanguinis, 2021, 116, 601-608.	0.7	1
106	A pair of <scp>S</scp> â€silencing single nucleotide variants <i>cis</i> â€linked on <scp><i>GYPB</i></scp> . Transfusion, 2021, 61, E34-E36.	0.8	1
107	Molecular blood group screening in Omani blood donors. Vox Sanguinis, 2022, 117, 424-430.	0.7	1
108	Molecular immunohaematology round table discussions at the AABB Annual Meeting, Orlando 2016. Blood Transfusion, 2018, 16, 447-456.	0.3	1

#	ARTICLE	IF	CITATIONS
109	A case of Tn polyagglutination discovered by an <scp>ABO</scp> blood group discrepancy. Transfusion, 0, , .	0.8	1
110	The above letter was sent to Branch et al.; Drs Branch and Denomme offered the following reply Transfusion, 2007, 47, 351-352.	0.8	0
111	The Development of a Bacteriophage Expression Vector for Cloning Immunoglobulin Variable Region Genes from B ell Genomic DNA ^a . Annals of the New York Academy of Sciences, 1995, 764, 580-582.	1.8	0
112	Editorial Comment. Transfusion and Apheresis Science, 2011, 44, 49.	0.5	0
113	Microfluidic approach to genotyping human platelet antigens. IET Nanobiotechnology, 2012, 6, 33.	1.9	0
114	Novel <i>KEL*02N</i> allele in Saudi Arabia encoding a Kell null (<scp>K₀</scp>) phenotype. Transfusion, 2021, 61, E49-E50.	0.8	0
115	Immunoglobulin V region heavy and light chain gene sequences of the lymphoblastoid cell line GM 4672. Human Antibodies and Hybridomas, 1993, 4, 98-103.	0.1	0